retab: manually, fix damage

Some places were written assuming ts=2, others assuming ts=8. I did my
best to restore everything.
This commit is contained in:
Jōshin 2023-12-16 22:07:39 -05:00
parent f224719b1d
commit a228426480
No known key found for this signature in database
2 changed files with 385 additions and 385 deletions

View file

@ -292,229 +292,229 @@ static long double powil(long double, int);
long double powl(long double x, long double y) long double powl(long double x, long double y)
{ {
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
int i, nflg, iyflg, yoddint; int i, nflg, iyflg, yoddint;
long e; long e;
volatile long double z=0; volatile long double z=0;
long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0; long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
/* make sure no invalid exception is raised by nan comparision */ /* make sure no invalid exception is raised by nan comparision */
if (isnan(x)) { if (isnan(x)) {
if (!isnan(y) && y == 0.0) if (!isnan(y) && y == 0.0)
return 1.0; return 1.0;
return x; return x;
} }
if (isnan(y)) { if (isnan(y)) {
if (x == 1.0) if (x == 1.0)
return 1.0; return 1.0;
return y; return y;
} }
if (x == 1.0) if (x == 1.0)
return 1.0; /* 1**y = 1, even if y is nan */ return 1.0; /* 1**y = 1, even if y is nan */
if (x == -1.0 && !isfinite(y)) if (x == -1.0 && !isfinite(y))
return 1.0; /* -1**inf = 1 */ return 1.0; /* -1**inf = 1 */
if (y == 0.0) if (y == 0.0)
return 1.0; /* x**0 = 1, even if x is nan */ return 1.0; /* x**0 = 1, even if x is nan */
if (y == 1.0) if (y == 1.0)
return x; return x;
if (y >= LDBL_MAX) { if (y >= LDBL_MAX) {
if (x > 1.0 || x < -1.0) if (x > 1.0 || x < -1.0)
return INFINITY; return INFINITY;
if (x != 0.0) if (x != 0.0)
return 0.0; return 0.0;
} }
if (y <= -LDBL_MAX) { if (y <= -LDBL_MAX) {
if (x > 1.0 || x < -1.0) if (x > 1.0 || x < -1.0)
return 0.0; return 0.0;
if (x != 0.0 || y == -INFINITY) if (x != 0.0 || y == -INFINITY)
return INFINITY; return INFINITY;
} }
if (x >= LDBL_MAX) { if (x >= LDBL_MAX) {
if (y > 0.0) if (y > 0.0)
return INFINITY; return INFINITY;
return 0.0; return 0.0;
} }
w = floorl(y); w = floorl(y);
/* Set iyflg to 1 if y is an integer. */ /* Set iyflg to 1 if y is an integer. */
iyflg = 0; iyflg = 0;
if (w == y) if (w == y)
iyflg = 1; iyflg = 1;
/* Test for odd integer y. */ /* Test for odd integer y. */
yoddint = 0; yoddint = 0;
if (iyflg) { if (iyflg) {
ya = fabsl(y); ya = fabsl(y);
ya = floorl(0.5 * ya); ya = floorl(0.5 * ya);
yb = 0.5 * fabsl(w); yb = 0.5 * fabsl(w);
if( ya != yb ) if( ya != yb )
yoddint = 1; yoddint = 1;
} }
if (x <= -LDBL_MAX) { if (x <= -LDBL_MAX) {
if (y > 0.0) { if (y > 0.0) {
if (yoddint) if (yoddint)
return -INFINITY; return -INFINITY;
return INFINITY; return INFINITY;
} }
if (y < 0.0) { if (y < 0.0) {
if (yoddint) if (yoddint)
return -0.0; return -0.0;
return 0.0; return 0.0;
} }
} }
nflg = 0; /* (x<0)**(odd int) */ nflg = 0; /* (x<0)**(odd int) */
if (x <= 0.0) { if (x <= 0.0) {
if (x == 0.0) { if (x == 0.0) {
if (y < 0.0) { if (y < 0.0) {
if (signbit(x) && yoddint) if (signbit(x) && yoddint)
/* (-0.0)**(-odd int) = -inf, divbyzero */ /* (-0.0)**(-odd int) = -inf, divbyzero */
return -1.0/0.0; return -1.0/0.0;
/* (+-0.0)**(negative) = inf, divbyzero */ /* (+-0.0)**(negative) = inf, divbyzero */
return 1.0/0.0; return 1.0/0.0;
} }
if (signbit(x) && yoddint) if (signbit(x) && yoddint)
return -0.0; return -0.0;
return 0.0; return 0.0;
} }
if (iyflg == 0) if (iyflg == 0)
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
/* (x<0)**(integer) */ /* (x<0)**(integer) */
if (yoddint) if (yoddint)
nflg = 1; /* negate result */ nflg = 1; /* negate result */
x = -x; x = -x;
} }
/* (+integer)**(integer) */ /* (+integer)**(integer) */
if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) { if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
w = powil(x, (int)y); w = powil(x, (int)y);
return nflg ? -w : w; return nflg ? -w : w;
} }
/* separate significand from exponent */ /* separate significand from exponent */
x = frexpl(x, &i); x = frexpl(x, &i);
e = i; e = i;
/* find significand in antilog table A[] */ /* find significand in antilog table A[] */
i = 1; i = 1;
if (x <= A[17]) if (x <= A[17])
i = 17; i = 17;
if (x <= A[i+8]) if (x <= A[i+8])
i += 8; i += 8;
if (x <= A[i+4]) if (x <= A[i+4])
i += 4; i += 4;
if (x <= A[i+2]) if (x <= A[i+2])
i += 2; i += 2;
if (x >= A[1]) if (x >= A[1])
i = -1; i = -1;
i += 1; i += 1;
/* Find (x - A[i])/A[i] /* Find (x - A[i])/A[i]
* in order to compute log(x/A[i]): * in order to compute log(x/A[i]):
* *
* log(x) = log( a x/a ) = log(a) + log(x/a) * log(x) = log( a x/a ) = log(a) + log(x/a)
* *
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
*/ */
x -= A[i]; x -= A[i];
x -= B[i/2]; x -= B[i/2];
x /= A[i]; x /= A[i];
/* rational approximation for log(1+v): /* rational approximation for log(1+v):
* *
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
*/ */
z = x*x; z = x*x;
w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3)); w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
w = w - 0.5*z; w = w - 0.5*z;
/* Convert to base 2 logarithm: /* Convert to base 2 logarithm:
* multiply by log2(e) = 1 + LOG2EA * multiply by log2(e) = 1 + LOG2EA
*/ */
z = LOG2EA * w; z = LOG2EA * w;
z += w; z += w;
z += LOG2EA * x; z += LOG2EA * x;
z += x; z += x;
/* Compute exponent term of the base 2 logarithm. */ /* Compute exponent term of the base 2 logarithm. */
w = -i; w = -i;
w /= NXT; w /= NXT;
w += e; w += e;
/* Now base 2 log of x is w + z. */ /* Now base 2 log of x is w + z. */
/* Multiply base 2 log by y, in extended precision. */ /* Multiply base 2 log by y, in extended precision. */
/* separate y into large part ya /* separate y into large part ya
* and small part yb less than 1/NXT * and small part yb less than 1/NXT
*/ */
ya = reducl(y); ya = reducl(y);
yb = y - ya; yb = y - ya;
/* (w+z)(ya+yb) /* (w+z)(ya+yb)
* = w*ya + w*yb + z*y * = w*ya + w*yb + z*y
*/ */
F = z * y + w * yb; F = z * y + w * yb;
Fa = reducl(F); Fa = reducl(F);
Fb = F - Fa; Fb = F - Fa;
G = Fa + w * ya; G = Fa + w * ya;
Ga = reducl(G); Ga = reducl(G);
Gb = G - Ga; Gb = G - Ga;
H = Fb + Gb; H = Fb + Gb;
Ha = reducl(H); Ha = reducl(H);
w = (Ga + Ha) * NXT; w = (Ga + Ha) * NXT;
/* Test the power of 2 for overflow */ /* Test the power of 2 for overflow */
if (w > MEXP) if (w > MEXP)
return huge * huge; /* overflow */ return huge * huge; /* overflow */
if (w < MNEXP) if (w < MNEXP)
return twom10000 * twom10000; /* underflow */ return twom10000 * twom10000; /* underflow */
e = w; e = w;
Hb = H - Ha; Hb = H - Ha;
if (Hb > 0.0) { if (Hb > 0.0) {
e += 1; e += 1;
Hb -= 1.0/NXT; /*0.0625L;*/ Hb -= 1.0/NXT; /*0.0625L;*/
} }
/* Now the product y * log2(x) = Hb + e/NXT. /* Now the product y * log2(x) = Hb + e/NXT.
* *
* Compute base 2 exponential of Hb, * Compute base 2 exponential of Hb,
* where -0.0625 <= Hb <= 0. * where -0.0625 <= Hb <= 0.
*/ */
z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */ z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths. /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
* Find lookup table entry for the fractional power of 2. * Find lookup table entry for the fractional power of 2.
*/ */
if (e < 0) if (e < 0)
i = 0; i = 0;
else else
i = 1; i = 1;
i = e/NXT + i; i = e/NXT + i;
e = NXT*i - e; e = NXT*i - e;
w = A[e]; w = A[e];
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
z = z + w; z = z + w;
z = scalbnl(z, i); /* multiply by integer power of 2 */ z = scalbnl(z, i); /* multiply by integer power of 2 */
if (nflg) if (nflg)
z = -z; z = -z;
return z; return z;
} }
/* Find a multiple of 1/NXT that is within 1/NXT of x. */ /* Find a multiple of 1/NXT that is within 1/NXT of x. */
static long double reducl(long double x) static long double reducl(long double x)
{ {
long double t; long double t;
t = x * NXT; t = x * NXT;
t = floorl(t); t = floorl(t);
t = t / NXT; t = t / NXT;
return t; return t;
} }
/* /*
@ -551,66 +551,66 @@ static long double reducl(long double x)
static long double powil(long double x, int nn) static long double powil(long double x, int nn)
{ {
long double ww, y; long double ww, y;
long double s; long double s;
int n, e, sign, lx; int n, e, sign, lx;
if (nn == 0) if (nn == 0)
return 1.0; return 1.0;
if (nn < 0) { if (nn < 0) {
sign = -1; sign = -1;
n = -nn; n = -nn;
} else { } else {
sign = 1; sign = 1;
n = nn; n = nn;
} }
/* Overflow detection */ /* Overflow detection */
/* Calculate approximate logarithm of answer */ /* Calculate approximate logarithm of answer */
s = x; s = x;
s = frexpl( s, &lx); s = frexpl( s, &lx);
e = (lx - 1)*n; e = (lx - 1)*n;
if ((e == 0) || (e > 64) || (e < -64)) { if ((e == 0) || (e > 64) || (e < -64)) {
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L; s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
} else { } else {
s = LOGE2L * e; s = LOGE2L * e;
} }
if (s > MAXLOGL) if (s > MAXLOGL)
return huge * huge; /* overflow */ return huge * huge; /* overflow */
if (s < MINLOGL) if (s < MINLOGL)
return twom10000 * twom10000; /* underflow */ return twom10000 * twom10000; /* underflow */
/* Handle tiny denormal answer, but with less accuracy /* Handle tiny denormal answer, but with less accuracy
* since roundoff error in 1.0/x will be amplified. * since roundoff error in 1.0/x will be amplified.
* The precise demarcation should be the gradual underflow threshold. * The precise demarcation should be the gradual underflow threshold.
*/ */
if (s < -MAXLOGL+2.0) { if (s < -MAXLOGL+2.0) {
x = 1.0/x; x = 1.0/x;
sign = -sign; sign = -sign;
} }
/* First bit of the power */ /* First bit of the power */
if (n & 1) if (n & 1)
y = x; y = x;
else else
y = 1.0; y = 1.0;
ww = x; ww = x;
n >>= 1; n >>= 1;
while (n) { while (n) {
ww = ww * ww; /* arg to the 2-to-the-kth power */ ww = ww * ww; /* arg to the 2-to-the-kth power */
if (n & 1) /* if that bit is set, then include in product */ if (n & 1) /* if that bit is set, then include in product */
y *= ww; y *= ww;
n >>= 1; n >>= 1;
} }
if (sign < 0) if (sign < 0)
y = 1.0/y; y = 1.0/y;
return y; return y;
} }
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
@ -649,35 +649,35 @@ Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>\"");
/* powl(x,y) return x**y /* powl(x,y) return x**y
* *
* n * n
* Method: Let x = 2 * (1+f) * Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces: * 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2, * log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros. * where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating multi-precision * 2. Perform y*log2(x) = n+y' by simulating multi-precision
* arithmetic, where |y'|<=0.5. * arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2) * 3. Return x**y = 2**n*exp(y'*log2)
* *
* Special cases: * Special cases:
* 1. (anything) ** 0 is 1 * 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself * 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN * 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN * 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF * 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0 * 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0 * 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF * 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN * 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0 * 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF * 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF * 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0 * 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything) * 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN * 19. (-anything except 0 and inf) ** (non-integer) is NAN
* *
*/ */
@ -792,10 +792,10 @@ powl(long double x, long double y)
/* +-NaN return x+y */ /* +-NaN return x+y */
if ((ix > 0x7fff0000) if ((ix > 0x7fff0000)
|| ((ix == 0x7fff0000) || ((ix == 0x7fff0000)
&& ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0)) && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
|| (iy > 0x7fff0000) || (iy > 0x7fff0000)
|| ((iy == 0x7fff0000) || ((iy == 0x7fff0000)
&& ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0))) && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
return nan_mix(x, y); return nan_mix(x, y);
/* determine if y is an odd int when x < 0 /* determine if y is an odd int when x < 0
@ -806,48 +806,48 @@ powl(long double x, long double y)
yisint = 0; yisint = 0;
if (hx < 0) if (hx < 0)
{ {
if (iy >= 0x40700000) /* 2^113 */ if (iy >= 0x40700000) /* 2^113 */
yisint = 2; /* even integer y */ yisint = 2; /* even integer y */
else if (iy >= 0x3fff0000) /* 1.0 */ else if (iy >= 0x3fff0000) /* 1.0 */
{ {
if (floorl (y) == y) if (floorl (y) == y)
{ {
z = 0.5 * y; z = 0.5 * y;
if (floorl (z) == z) if (floorl (z) == z)
yisint = 2; yisint = 2;
else else
yisint = 1; yisint = 1;
} }
} }
} }
/* special value of y */ /* special value of y */
if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
{ {
if (iy == 0x7fff0000) /* y is +-inf */ if (iy == 0x7fff0000) /* y is +-inf */
{ {
if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi | if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
p.parts32.lswlo) == 0) p.parts32.lswlo) == 0)
return y - y; /* +-1**inf is NaN */ return y - y; /* +-1**inf is NaN */
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero; return (hy >= 0) ? y : zero;
else /* (|x|<1)**-,+inf = inf,0 */ else /* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero; return (hy < 0) ? -y : zero;
} }
if (iy == 0x3fff0000) if (iy == 0x3fff0000)
{ /* y is +-1 */ { /* y is +-1 */
if (hy < 0) if (hy < 0)
return one / x; return one / x;
else else
return x; return x;
} }
if (hy == 0x40000000) if (hy == 0x40000000)
return x * x; /* y is 2 */ return x * x; /* y is 2 */
if (hy == 0x3ffe0000) if (hy == 0x3ffe0000)
{ /* y is 0.5 */ { /* y is 0.5 */
if (hx >= 0) /* x >= +0 */ if (hx >= 0) /* x >= +0 */
return sqrtl (x); return sqrtl (x);
} }
} }
ax = fabsl (x); ax = fabsl (x);
@ -855,21 +855,21 @@ powl(long double x, long double y)
if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0) if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
{ {
if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
{ {
z = ax; /*x is +-0,+-inf,+-1 */ z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0) if (hy < 0)
z = one / z; /* z = (1/|x|) */ z = one / z; /* z = (1/|x|) */
if (hx < 0) if (hx < 0)
{ {
if (((ix - 0x3fff0000) | yisint) == 0) if (((ix - 0x3fff0000) | yisint) == 0)
{ {
z = (z - z) / (z - z); /* (-1)**non-int is NaN */ z = (z - z) / (z - z); /* (-1)**non-int is NaN */
} }
else if (yisint == 1) else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */ z = -z; /* (x<0)**odd = -(|x|**odd) */
} }
return z; return z;
} }
} }
/* (x<0)**(non-int) is NaN */ /* (x<0)**(non-int) is NaN */
@ -883,17 +883,17 @@ powl(long double x, long double y)
{ {
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x407d654b) if (iy > 0x407d654b)
{ {
if (ix <= 0x3ffeffff) if (ix <= 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny; return (hy < 0) ? huge * huge : tiny * tiny;
if (ix >= 0x3fff0000) if (ix >= 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny; return (hy > 0) ? huge * huge : tiny * tiny;
} }
/* over/underflow if x is not close to one */ /* over/underflow if x is not close to one */
if (ix < 0x3ffeffff) if (ix < 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny; return (hy < 0) ? huge * huge : tiny * tiny;
if (ix > 0x3fff0000) if (ix > 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny; return (hy > 0) ? huge * huge : tiny * tiny;
} }
n = 0; n = 0;
@ -908,11 +908,11 @@ powl(long double x, long double y)
n += ((ix) >> 16) - 0x3fff; n += ((ix) >> 16) - 0x3fff;
j = ix & 0x0000ffff; j = ix & 0x0000ffff;
/* determine interval */ /* determine interval */
ix = j | 0x3fff0000; /* normalize ix */ ix = j | 0x3fff0000; /* normalize ix */
if (j <= 0x3988) if (j <= 0x3988)
k = 0; /* |x|<sqrt(3/2) */ k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb67) else if (j < 0xbb67)
k = 1; /* |x|<sqrt(3) */ k = 1; /* |x|<sqrt(3) */
else else
{ {
k = 0; k = 0;
@ -925,7 +925,7 @@ powl(long double x, long double y)
ax = o.value; ax = o.value;
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]); v = one / (ax + bp[k]);
s = u * v; s = u * v;
s_h = s; s_h = s;
@ -965,7 +965,7 @@ powl(long double x, long double y)
o.parts32.lswhi &= 0xf8000000; o.parts32.lswhi &= 0xf8000000;
p_h = o.value; p_h = o.value;
p_l = v - (p_h - u); p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k]; z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n; t = (long double) n;
@ -979,7 +979,7 @@ powl(long double x, long double y)
/* s (sign of result -ve**odd) = -1 else = 1 */ /* s (sign of result -ve**odd) = -1 else = 1 */
s = one; s = one;
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0) if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
s = -one; /* (-ve)**(odd int) */ s = -one; /* (-ve)**(odd int) */
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */ /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
yy1 = y; yy1 = y;
@ -996,33 +996,33 @@ powl(long double x, long double y)
{ {
/* if z > 16384 */ /* if z > 16384 */
if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi | if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
o.parts32.lswlo) != 0) o.parts32.lswlo) != 0)
return s * huge * huge; /* overflow */ return s * huge * huge; /* overflow */
else else
{ {
if (p_l + ovt > z - p_h) if (p_l + ovt > z - p_h)
return s * huge * huge; /* overflow */ return s * huge * huge; /* overflow */
} }
} }
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
{ {
/* z < -16495 */ /* z < -16495 */
if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi | if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
o.parts32.lswlo) o.parts32.lswlo)
!= 0) != 0)
return s * tiny * tiny; /* underflow */ return s * tiny * tiny; /* underflow */
else else
{ {
if (p_l <= z - p_h) if (p_l <= z - p_h)
return s * tiny * tiny; /* underflow */ return s * tiny * tiny; /* underflow */
} }
} }
/* compute 2**(p_h+p_l) */ /* compute 2**(p_h+p_l) */
i = j & 0x7fffffff; i = j & 0x7fffffff;
k = (i >> 16) - 0x3fff; k = (i >> 16) - 0x3fff;
n = 0; n = 0;
if (i > 0x3ffe0000) if (i > 0x3ffe0000)
{ /* if |z| > 0.5, set n = [z+0.5] */ { /* if |z| > 0.5, set n = [z+0.5] */
n = floorl (z + 0.5L); n = floorl (z + 0.5L);
t = n; t = n;
p_h -= t; p_h -= t;
@ -1047,7 +1047,7 @@ powl(long double x, long double y)
j = o.parts32.mswhi; j = o.parts32.mswhi;
j += (n << 16); j += (n << 16);
if ((j >> 16) <= 0) if ((j >> 16) <= 0)
z = scalbnl (z, n); /* subnormal output */ z = scalbnl (z, n); /* subnormal output */
else else
{ {
o.parts32.mswhi = j; o.parts32.mswhi = j;

View file

@ -34,41 +34,41 @@ static const float zero = 0.0;
float float
remainderf2(float x, float p) remainderf2(float x, float p)
{ {
int32_t hx,hp; int32_t hx,hp;
uint32_t sx; uint32_t sx;
float p_half; float p_half;
GET_FLOAT_WORD(hx,x); GET_FLOAT_WORD(hx,x);
GET_FLOAT_WORD(hp,p); GET_FLOAT_WORD(hp,p);
sx = hx&0x80000000; sx = hx&0x80000000;
hp &= 0x7fffffff; hp &= 0x7fffffff;
hx &= 0x7fffffff; hx &= 0x7fffffff;
/* purge off exception values */ /* purge off exception values */
if((hp==0)|| /* p = 0 */ if((hp==0)|| /* p = 0 */
(hx>=0x7f800000)|| /* x not finite */ (hx>=0x7f800000)|| /* x not finite */
((hp>0x7f800000))) /* p is NaN */ ((hp>0x7f800000))) /* p is NaN */
return nan_mix_op(x, p, *)/nan_mix_op(x, p, *); return nan_mix_op(x, p, *)/nan_mix_op(x, p, *);
if (hp<=0x7effffff) x = fmodf(x,p+p); /* now x < 2p */ if (hp<=0x7effffff) x = fmodf(x,p+p); /* now x < 2p */
if ((hx-hp)==0) return zero*x; if ((hx-hp)==0) return zero*x;
x = fabsf(x); x = fabsf(x);
p = fabsf(p); p = fabsf(p);
if (hp<0x01000000) { if (hp<0x01000000) {
if(x+x>p) { if(x+x>p) {
x-=p; x-=p;
if(x+x>=p) x -= p; if(x+x>=p) x -= p;
} }
} else { } else {
p_half = (float)0.5*p; p_half = (float)0.5*p;
if(x>p_half) { if(x>p_half) {
x-=p; x-=p;
if(x>=p_half) x -= p; if(x>=p_half) x -= p;
} }
} }
GET_FLOAT_WORD(hx,x); GET_FLOAT_WORD(hx,x);
if ((hx&0x7fffffff)==0) hx = 0; if ((hx&0x7fffffff)==0) hx = 0;
SET_FLOAT_WORD(x,hx^sx); SET_FLOAT_WORD(x,hx^sx);
return x; return x;
} }