Simplify TLS and reduce startup latency

This change simplifies the thread-local storage support code. On Windows
and Mac OS X the startup latency of __enable_tls() has been reduced from
30ms to 1ms. On Windows, TLS memory accesses will now go much faster due
to better self-modifying code that prevents a function call and acquires
our thread information block pointer in a single instruction.
This commit is contained in:
Justine Tunney 2022-07-18 03:33:32 -07:00
parent 38c3fa63fe
commit b1d9d11be1
15 changed files with 136 additions and 312 deletions

View file

@ -16,6 +16,7 @@
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*/
#include "libc/bits/bits.h"
#include "libc/calls/calls.h"
#include "libc/calls/strace.internal.h"
#include "libc/calls/syscall-sysv.internal.h"
@ -45,11 +46,16 @@
#define _TLDZ ((intptr_t)_tdata_size)
#define _TIBZ sizeof(struct cthread_descriptor_t)
typedef char xmm_t __attribute__((__vector_size__(16), __aligned__(1)));
__msabi extern typeof(TlsAlloc) *const __imp_TlsAlloc;
extern unsigned char __tls_mov_nt_rax[];
extern unsigned char __tls_add_nt_rax[];
/**
* Enables thread local storage.
*/
privileged void __enable_tls(void) {
if (__tls_enabled) return;
STRACE("__enable_tls()");
@ -111,98 +117,93 @@ privileged void __enable_tls(void) {
: "rcx", "r11", "memory");
}
/*
* We need to rewrite SysV _Thread_local code. You MUST use the
* -mno-tls-direct-seg-refs flag which generates code like this
*
* 64 48 8b 0R4 25 00 00 00 00 mov %fs:0,%R
* 64 48 03 0R4 25 00 00 00 00 add %fs:0,%R
*
* Which on Mac we can replace with this:
*
* 65 48 8b 0R4 25 30 00 00 00 mov %gs:0x30,%R
*
* Whereas on Windows we'll replace it with this:
*
* 0f 1f 40 00 fatnop4
* e8 xx xx xx xx call __tls_mov_nt_%R
*
* Since we have no idea where the TLS instructions exist in the
* binary, we need to disassemble the whole program image. This'll
* potentially take a few milliseconds for some larger programs.
*
* We check `_tls_content` which is generated by the linker script
* since it lets us determine ahead of time if _Thread_local vars
* have actually been linked into this program.
*
* TODO(jart): compute probability this is just overkill
*/
// We need to rewrite SysV _Thread_local code. You MUST use the
// -mno-tls-direct-seg-refs flag which generates code like this
//
// 64 48 8b 0R4 25 00 00 00 00 mov %fs:0,%R
// 64 48 03 0R4 25 00 00 00 00 add %fs:0,%R
//
// Which on Mac we can replace with this:
//
// 65 48 8b 0R4 25 30 00 00 00 mov %gs:0x30,%R
//
// Whereas on Windows we'll replace it with this:
//
// 0f 1f 40 00 fatnop4
// e8 xx xx xx xx call __tls_mov_nt_%R
//
// Since we have no idea where the TLS instructions exist in the
// binary, we need to disassemble the whole program image. This'll
// potentially take a few milliseconds for some larger programs.
//
// We check `_tls_content` which is generated by the linker script
// since it lets us determine ahead of time if _Thread_local vars
// have actually been linked into this program.
if ((intptr_t)_tls_content && (IsWindows() || IsXnu())) {
int n, reg, dis;
int n;
uint64_t w;
unsigned m, dis;
unsigned char *p;
const unsigned char *impl;
struct XedDecodedInst xedd;
__morph_begin();
// The most expensive part of this process is we need to compute the
// byte length of each instruction in our program. We'll use Intel's
// disassembler for this purpose.
for (p = _ereal; p < __privileged_start; p += n) {
xed_decoded_inst_zero_set_mode(&xedd, XED_MACHINE_MODE_LONG_64);
if (!xed_instruction_length_decode(&xedd, p, 15)) {
if (IsXnu()) {
// Apple is quite straightforward to patch. We basically
// just change the segment register, and the linear slot
// address 0x30 was promised to us, according to Go team
// https://github.com/golang/go/issues/23617
dis = 0x30;
} else {
// MSVC __declspec(thread) generates binary code for this
// %gs:0x1480 abi. So long as TlsAlloc() isn't called >64
// times we should be good.
dis = 0x1480 + __tls_index * 8;
}
// We now know p[0] is most likely the first byte of an x86 op.
// Let's check and see if it's the GCC linear TIB address load.
// We hope and pray GCC won't generate TLS stores to %r8..%r15.
if (xedd.length == 9 && //
0144 == p[0] && // fs
0110 == p[1] && // rex.w (64-bit operand size)
(0213 == p[2] || // mov reg/mem → reg (word-sized)
0003 == p[2]) && // add reg/mem → reg (word-sized)
0004 == (p[3] & 0307) && // mod/rm (4,reg,0) means sib → reg
0045 == p[4] && // sib (5,4,0) → (rbp,rsp,0) → disp32
0000 == p[5] && // displacement (von Neumann endian)
0000 == p[6] && // displacement
0000 == p[7] && // displacement
0000 == p[8]) { // displacement
// iterate over modifiable code looking for 9 byte instruction
// this would take 30 ms using xed to enable tls on python.com
for (p = _ereal; p + 9 <= __privileged_start; p += n) {
// Apple is quite straightforward to patch. We basically
// just change the segment register, and the linear slot
if (IsXnu()) {
p[0] = 0145; // this changes gs segment to fs segment
p[5] = 0x30; // tib slot index for tib linear address
}
// Windows is kind of complicated. We need to replace the
// segment mov instruction with a function call, that (a)
// won't clobber registers, and (b) has a return register
// that's the same as the mov destination. When setting
// function displacement, &CALL+5+DISP must equal &FUNC.
else {
if (p[2] == 3) {
impl = __tls_add_nt_rax;
} else {
impl = __tls_mov_nt_rax;
}
reg = (p[3] & 070) >> 3;
dis = (impl + reg * 18) - (p + 9);
p[0] = 0017; // map1
p[1] = 0037; // nopl (onl if reg=0)
p[2] = 0100; // mod/rm (%rax)+disp8
p[3] = 0000; // displacement
p[4] = 0350; // call
p[5] = (dis & 0x000000ff) >> 000; // displacement
p[6] = (dis & 0x0000ff00) >> 010; // displacement
p[7] = (dis & 0x00ff0000) >> 020; // displacement
p[8] = (dis & 0xff000000) >> 030; // displacement
}
// use sse to zoom zoom to fs register prefixes
// that way it'll take 1 ms to morph python.com
while (p + 9 + 16 <= __privileged_start) {
if ((m = __builtin_ia32_pmovmskb128(
*(xmm_t *)p == (xmm_t){0144, 0144, 0144, 0144, 0144, 0144,
0144, 0144, 0144, 0144, 0144, 0144,
0144, 0144, 0144, 0144}))) {
m = __builtin_ctzll(m);
p += m;
break;
} else {
p += 16;
}
}
// Move to the next instruction.
n = xedd.length;
// we're checking for the following expression:
// 0144 == p[0] && // fs
// 0110 == p[1] && // rex.w (64-bit operand size)
// (0213 == p[2] || // mov reg/mem → reg (word-sized)
// 0003 == p[2]) && // add reg/mem → reg (word-sized)
// 0004 == (p[3] & 0307) && // mod/rm (4,reg,0) means sib → reg
// 0045 == p[4] && // sib (5,4,0) → (rbp,rsp,0) → disp32
// 0000 == p[5] && // displacement (von Neumann endian)
// 0000 == p[6] && // displacement
// 0000 == p[7] && // displacement
// 0000 == p[8] // displacement
w = READ64LE(p) & READ64LE("\377\377\377\307\377\377\377\377");
if ((w == READ64LE("\144\110\213\004\045\000\000\000") ||
w == READ64LE("\144\110\003\004\045\000\000\000")) &&
!p[8]) {
// now change the code
p[0] = 0145; // this changes gs segment to fs segment
p[5] = (dis & 0x000000ff) >> 000; // displacement
p[6] = (dis & 0x0000ff00) >> 010; // displacement
p[7] = (dis & 0x00ff0000) >> 020; // displacement
p[8] = (dis & 0xff000000) >> 030; // displacement
// advance to the next instruction
n = 9;
} else {
// If Xed failed to decode the instruction, then we'll just plow
// through memory one byte at a time until Xed's morale improves
n = 1;
}
}