mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-10-09 22:28:24 +00:00
Import radpajama (a redpajama.cpp fork) (#814)
This is the relevant commit: bfa6466199
Model download links:
https://huggingface.co/ceonlabs/radpajama/tree/main
This commit is contained in:
parent
cba15bc77a
commit
b3e3359d22
30 changed files with 26497 additions and 0 deletions
144
third_party/radpajama/scripts/convert_gptneox_to_ggml.py
vendored
Normal file
144
third_party/radpajama/scripts/convert_gptneox_to_ggml.py
vendored
Normal file
|
@ -0,0 +1,144 @@
|
|||
# Convert Hugging Face fine-tuned gpt-neox-like models to ggml format
|
||||
|
||||
import io
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import code
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
|
||||
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
|
||||
print(" dir-output: directory where the output file will be written")
|
||||
print(" use-f32: if present, use float32 instead of float16")
|
||||
sys.exit(1)
|
||||
|
||||
model_name = sys.argv[1]
|
||||
dir_out = sys.argv[2]
|
||||
model_cache_dir = dir_out + "-cache"
|
||||
|
||||
# make sure the output directory exists
|
||||
os.makedirs(dir_out, exist_ok=True)
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
ftype = 1
|
||||
if len(sys.argv) > 3:
|
||||
ftype = 0
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
print("Loading model: ", model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if ftype == 1 else torch.float32,
|
||||
cache_dir=model_cache_dir)
|
||||
model.eval()
|
||||
for p in model.parameters():
|
||||
p.requires_grad = False
|
||||
hparams = model.config.to_dict()
|
||||
print("Model loaded: ", model_name)
|
||||
|
||||
fn_bin = f"/ggml-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
|
||||
fn_out = dir_out + fn_bin
|
||||
fout = open(fn_out, "wb")
|
||||
|
||||
ggml_file_magic = 0x67676d66 # 0x67676d6c is unversioned
|
||||
ggml_file_version = 0x00000001 # v1
|
||||
|
||||
hparams["multiple_of"] = 1
|
||||
fout.write(struct.pack("i", ggml_file_magic)) # magic: ggmf in hex
|
||||
fout.write(struct.pack("i", ggml_file_version))
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["max_position_embeddings"]))
|
||||
fout.write(struct.pack("i", hparams["hidden_size"]))
|
||||
fout.write(struct.pack("i", hparams["num_attention_heads"]))
|
||||
fout.write(struct.pack("i", hparams["num_hidden_layers"]))
|
||||
fout.write(struct.pack("i", int((hparams["hidden_size"] / hparams["num_attention_heads"]
|
||||
) * hparams["rotary_pct"]))) # rotary_dim
|
||||
fout.write(struct.pack("i", int(hparams["use_parallel_residual"])))
|
||||
fout.write(struct.pack("i", ftype))
|
||||
|
||||
# Is this correct??
|
||||
dot_token = tokenizer.encode(".")[0]
|
||||
for i in range(hparams["vocab_size"]):
|
||||
text = tokenizer.decode([i]).encode('utf-8')
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
list_vars = model.state_dict()
|
||||
|
||||
print(hparams)
|
||||
|
||||
for name in list_vars.keys():
|
||||
if name.startswith('gpt_neox.layers.'):
|
||||
if 'attention.masked_bias' in name or \
|
||||
'attention.rotary_emb.inv_freq' in name or \
|
||||
'attention.bias' in name:
|
||||
continue
|
||||
# No gradients for these
|
||||
list_vars[name].requires_grad = False
|
||||
src = name
|
||||
nn = name
|
||||
|
||||
print(src, ' -> ', name)
|
||||
data = list_vars[src].squeeze().numpy()
|
||||
data = data.astype(np.float32)
|
||||
|
||||
n_dims = len(data.shape)
|
||||
print(name, n_dims, data.shape)
|
||||
|
||||
# default type is fp32
|
||||
ftype_cur = 0
|
||||
if ftype == 1 and n_dims > 1:
|
||||
print(" Converting to float16", data.shape, data[:3, :3].tolist())
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32", data.shape,
|
||||
data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist())
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
||||
print(str)
|
||||
fout.write(str)
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fn_out)
|
||||
print("")
|
Loading…
Add table
Add a link
Reference in a new issue