Fix the build

This commit is contained in:
Justine Tunney 2024-07-28 21:02:04 -07:00
parent 77d3a07ff2
commit c1a0b017e9
No known key found for this signature in database
GPG key ID: BE714B4575D6E328
6 changed files with 161 additions and 61 deletions

View file

@ -1,54 +0,0 @@
/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi
Copyright 2021 Justine Alexandra Roberts Tunney
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*/
#include "libc/macros.internal.h"
#include "libc/math.h"
#include "libc/mem/gc.h"
#include "libc/testlib/ezbench.h"
#include "libc/testlib/testlib.h"
#include "libc/x/xasprintf.h"
#define N 100000
float F[N];
double D[N];
void SetUp(void) {
int i;
for (i = 0; i < N / 2; ++i) {
D[i * 2 + 0] = 1000000000.1;
D[i * 2 + 1] = 1.1;
}
for (i = 0; i < N / 2; ++i) {
F[i * 2 + 0] = 1000.1;
F[i * 2 + 1] = 1.1;
}
}
TEST(fsum, test) {
EXPECT_STREQ("500000000.6", gc(xasprintf("%.15g", fsum(D, N) / N)));
}
TEST(fsumf, test) {
EXPECT_STREQ("500.6", gc(xasprintf("%.7g", fsumf(F, N) / N)));
}
BENCH(fsum, bench) {
EZBENCH2("fsum", donothing, fsum(D, N));
EZBENCH2("fsumf", donothing, fsumf(F, N));
}

View file

@ -0,0 +1,154 @@
#include "libc/assert.h"
#include "libc/calls/struct/timespec.h"
#include "libc/intrin/bsr.h"
#include "libc/macros.internal.h"
#include "libc/math.h"
#include "libc/mem/gc.h"
#include "libc/mem/mem.h"
#include "libc/runtime/runtime.h"
#include "libc/stdio/stdio.h"
#include "libc/x/xasprintf.h"
int rand32(void) {
/* Knuth, D.E., "The Art of Computer Programming," Vol 2,
Seminumerical Algorithms, Third Edition, Addison-Wesley, 1998,
p. 106 (line 26) & p. 108 */
static unsigned long long lcg = 1;
lcg *= 6364136223846793005;
lcg += 1442695040888963407;
return lcg >> 32;
}
float float01(unsigned x) { // (0,1)
return 1.f / 8388608 * ((x >> 9) + .5f);
}
float numba(void) { // (-1,1)
return float01(rand32()) * 2 - 1;
}
double fsumf_gold(const float *p, size_t n) {
size_t i;
double s;
if (n > 8)
return fsumf_gold(p, n / 2) + fsumf_gold(p + n / 2, n - n / 2);
for (s = i = 0; i < n; ++i)
s += p[i];
return s;
}
float fsumf_linear(const float *p, size_t n) {
float s = 0;
for (size_t i = 0; i < n; ++i)
s += p[i];
return s;
}
float fsumf_kahan(const float *p, size_t n) {
size_t i;
float err, sum, t, y;
sum = err = 0;
for (i = 0; i < n; ++i) {
y = p[i] - err;
t = sum + y;
err = (t - sum) - y;
sum = t;
}
return sum;
}
float fsumf_logarithmic(const float *p, size_t n) {
size_t i;
float s;
if (n > 32)
return fsumf_logarithmic(p, n / 2) +
fsumf_logarithmic(p + n / 2, n - n / 2);
for (s = i = 0; i < n; ++i)
s += p[i];
return s;
}
template <int N>
inline float hsum(const float *p) {
return hsum<N / 2>(p) + hsum<N / 2>(p + N / 2);
}
template <>
inline float hsum<1>(const float *p) {
return *p;
}
#define CHUNK 8
#define OPTIMIZE __attribute__((__optimize__("-O3")))
#define PORTABLE __target_clones("avx512f,avx")
OPTIMIZE PORTABLE float fsumf_nonrecursive(const float *p, size_t n) {
unsigned i, par, len = 0;
float sum, res[n / CHUNK + 1];
for (res[0] = i = 0; i + CHUNK <= n; i += CHUNK)
res[len++] = hsum<CHUNK>(p + i);
if (i < n) {
for (sum = 0; i < n; i++)
sum += p[i];
res[len++] = sum;
}
for (par = len >> 1; par; par >>= 1, len >>= 1) {
for (i = 0; i < par; ++i)
res[i] += res[par + i];
if (len & 1)
res[par - 1] += res[len - 1];
}
return res[0];
}
void test_fsumf_nonrecursive(void) {
float A[CHUNK * 3];
for (int i = 0; i < CHUNK * 3; ++i)
A[i] = numba();
for (int n = 0; n < CHUNK * 3; ++n)
if (fabsf(fsumf_nonrecursive(A, n) - fsumf_kahan(A, n)) > 1e-3)
exit(7);
}
float nothing(float x) {
return x;
}
float (*barrier)(float) = nothing;
#define BENCH(ITERATIONS, WORK_PER_RUN, CODE) \
do { \
struct timespec start = timespec_real(); \
for (int __i = 0; __i < ITERATIONS; ++__i) { \
asm volatile("" ::: "memory"); \
CODE; \
} \
long long work = (WORK_PER_RUN) * (ITERATIONS); \
long nanos = \
(timespec_tonanos(timespec_sub(timespec_real(), start)) + work - 1) / \
(double)work; \
printf("%8ld ns %2dx %s\n", nanos, (ITERATIONS), #CODE); \
} while (0)
int main() {
size_t n = 1024;
float *p = (float *)malloc(sizeof(float) * n);
for (size_t i = 0; i < n; ++i)
p[i] = numba();
float kahan, gold, linear, logarithmic, nonrecursive;
test_fsumf_nonrecursive();
BENCH(100, 1, (kahan = barrier(fsumf_kahan(p, n))));
BENCH(100, 1, (gold = barrier(fsumf_gold(p, n))));
BENCH(100, 1, (linear = barrier(fsumf_linear(p, n))));
BENCH(100, 1, (logarithmic = barrier(fsumf_logarithmic(p, n))));
BENCH(100, 1, (nonrecursive = barrier(fsumf_nonrecursive(p, n))));
printf("gold = %.12g (%.12g)\n", gold, fabs(gold - gold));
printf("linear = %.12g (%.12g)\n", linear, fabs(linear - gold));
printf("kahan = %.12g (%.12g)\n", kahan, fabs(kahan - gold));
printf("logarithmic = %.12g (%.12g)\n", logarithmic,
fabs(logarithmic - gold));
printf("nonrecursive = %.12g (%.12g)\n", nonrecursive,
fabs(nonrecursive - gold));
free(p);
}