mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-27 15:52:28 +00:00
Initial import
This commit is contained in:
commit
c91b3c5006
14915 changed files with 590219 additions and 0 deletions
100
libc/math/log10.c
Normal file
100
libc/math/log10.c
Normal file
|
@ -0,0 +1,100 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* Return the base 10 logarithm of x. See log.c for most comments.
|
||||
*
|
||||
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
|
||||
* as in log.c, then combine and scale in extra precision:
|
||||
* log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
|
||||
*/
|
||||
|
||||
#include "libc/math/math.h"
|
||||
|
||||
static const double
|
||||
ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
|
||||
ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
|
||||
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
|
||||
log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
double log10(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
|
||||
uint32_t hx;
|
||||
int k;
|
||||
|
||||
hx = u.i>>32;
|
||||
k = 0;
|
||||
if (hx < 0x00100000 || hx>>31) {
|
||||
if (u.i<<1 == 0)
|
||||
return -1/(x*x); /* log(+-0)=-inf */
|
||||
if (hx>>31)
|
||||
return (x-x)/0.0; /* log(-#) = NaN */
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= 0x1p54;
|
||||
u.f = x;
|
||||
hx = u.i>>32;
|
||||
} else if (hx >= 0x7ff00000) {
|
||||
return x;
|
||||
} else if (hx == 0x3ff00000 && u.i<<32 == 0)
|
||||
return 0;
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += (int)(hx>>20) - 0x3ff;
|
||||
hx = (hx&0x000fffff) + 0x3fe6a09e;
|
||||
u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
|
||||
x = u.f;
|
||||
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5*f*f;
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
R = t2 + t1;
|
||||
|
||||
/* See log2.c for details. */
|
||||
/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
|
||||
hi = f - hfsq;
|
||||
u.f = hi;
|
||||
u.i &= (uint64_t)-1<<32;
|
||||
hi = u.f;
|
||||
lo = f - hi - hfsq + s*(hfsq+R);
|
||||
|
||||
/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
|
||||
val_hi = hi*ivln10hi;
|
||||
dk = k;
|
||||
y = dk*log10_2hi;
|
||||
val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
|
||||
|
||||
/*
|
||||
* Extra precision in for adding y is not strictly needed
|
||||
* since there is no very large cancellation near x = sqrt(2) or
|
||||
* x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
|
||||
* with some parallelism and it reduces the error for many args.
|
||||
*/
|
||||
w = y + val_hi;
|
||||
val_lo += (y - w) + val_hi;
|
||||
val_hi = w;
|
||||
|
||||
return val_lo + val_hi;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue