mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-03 11:12:27 +00:00
Initial import
This commit is contained in:
commit
c91b3c5006
14915 changed files with 590219 additions and 0 deletions
177
libc/math/log1pl.c
Normal file
177
libc/math/log1pl.c
Normal file
|
@ -0,0 +1,177 @@
|
|||
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */
|
||||
/*
|
||||
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
/*
|
||||
* Relative error logarithm
|
||||
* Natural logarithm of 1+x, long double precision
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, log1pl();
|
||||
*
|
||||
* y = log1pl( x );
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Returns the base e (2.718...) logarithm of 1+x.
|
||||
*
|
||||
* The argument 1+x is separated into its exponent and fractional
|
||||
* parts. If the exponent is between -1 and +1, the logarithm
|
||||
* of the fraction is approximated by
|
||||
*
|
||||
* log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
|
||||
*
|
||||
* Otherwise, setting z = 2(x-1)/x+1),
|
||||
*
|
||||
* log(x) = z + z^3 P(z)/Q(z).
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20
|
||||
*/
|
||||
|
||||
#include "libc/math/libm.h"
|
||||
|
||||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||||
long double log1pl(long double x)
|
||||
{
|
||||
return log1p(x);
|
||||
}
|
||||
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
||||
/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
|
||||
* 1/sqrt(2) <= x < sqrt(2)
|
||||
* Theoretical peak relative error = 2.32e-20
|
||||
*/
|
||||
static const long double P[] = {
|
||||
4.5270000862445199635215E-5L,
|
||||
4.9854102823193375972212E-1L,
|
||||
6.5787325942061044846969E0L,
|
||||
2.9911919328553073277375E1L,
|
||||
6.0949667980987787057556E1L,
|
||||
5.7112963590585538103336E1L,
|
||||
2.0039553499201281259648E1L,
|
||||
};
|
||||
static const long double Q[] = {
|
||||
/* 1.0000000000000000000000E0,*/
|
||||
1.5062909083469192043167E1L,
|
||||
8.3047565967967209469434E1L,
|
||||
2.2176239823732856465394E2L,
|
||||
3.0909872225312059774938E2L,
|
||||
2.1642788614495947685003E2L,
|
||||
6.0118660497603843919306E1L,
|
||||
};
|
||||
|
||||
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
||||
* where z = 2(x-1)/(x+1)
|
||||
* 1/sqrt(2) <= x < sqrt(2)
|
||||
* Theoretical peak relative error = 6.16e-22
|
||||
*/
|
||||
static const long double R[4] = {
|
||||
1.9757429581415468984296E-3L,
|
||||
-7.1990767473014147232598E-1L,
|
||||
1.0777257190312272158094E1L,
|
||||
-3.5717684488096787370998E1L,
|
||||
};
|
||||
static const long double S[4] = {
|
||||
/* 1.00000000000000000000E0L,*/
|
||||
-2.6201045551331104417768E1L,
|
||||
1.9361891836232102174846E2L,
|
||||
-4.2861221385716144629696E2L,
|
||||
};
|
||||
static const long double C1 = 6.9314575195312500000000E-1L;
|
||||
static const long double C2 = 1.4286068203094172321215E-6L;
|
||||
|
||||
#define SQRTH 0.70710678118654752440L
|
||||
|
||||
long double log1pl(long double xm1)
|
||||
{
|
||||
long double x, y, z;
|
||||
int e;
|
||||
|
||||
if (isnan(xm1))
|
||||
return xm1;
|
||||
if (xm1 == INFINITY)
|
||||
return xm1;
|
||||
if (xm1 == 0.0)
|
||||
return xm1;
|
||||
|
||||
x = xm1 + 1.0;
|
||||
|
||||
/* Test for domain errors. */
|
||||
if (x <= 0.0) {
|
||||
if (x == 0.0)
|
||||
return -1/(x*x); /* -inf with divbyzero */
|
||||
return 0/0.0f; /* nan with invalid */
|
||||
}
|
||||
|
||||
/* Separate mantissa from exponent.
|
||||
Use frexp so that denormal numbers will be handled properly. */
|
||||
x = frexpl(x, &e);
|
||||
|
||||
/* logarithm using log(x) = z + z^3 P(z)/Q(z),
|
||||
where z = 2(x-1)/x+1) */
|
||||
if (e > 2 || e < -2) {
|
||||
if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
||||
e -= 1;
|
||||
z = x - 0.5;
|
||||
y = 0.5 * z + 0.5;
|
||||
} else { /* 2 (x-1)/(x+1) */
|
||||
z = x - 0.5;
|
||||
z -= 0.5;
|
||||
y = 0.5 * x + 0.5;
|
||||
}
|
||||
x = z / y;
|
||||
z = x*x;
|
||||
z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
||||
z = z + e * C2;
|
||||
z = z + x;
|
||||
z = z + e * C1;
|
||||
return z;
|
||||
}
|
||||
|
||||
/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
||||
if (x < SQRTH) {
|
||||
e -= 1;
|
||||
if (e != 0)
|
||||
x = 2.0 * x - 1.0;
|
||||
else
|
||||
x = xm1;
|
||||
} else {
|
||||
if (e != 0)
|
||||
x = x - 1.0;
|
||||
else
|
||||
x = xm1;
|
||||
}
|
||||
z = x*x;
|
||||
y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
|
||||
y = y + e * C2;
|
||||
z = y - 0.5 * z;
|
||||
z = z + x;
|
||||
z = z + e * C1;
|
||||
return z;
|
||||
}
|
||||
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
||||
// TODO: broken implementation to make things compile
|
||||
long double log1pl(long double x)
|
||||
{
|
||||
return log1p(x);
|
||||
}
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue