mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-23 05:42:29 +00:00
Initial import
This commit is contained in:
commit
c91b3c5006
14915 changed files with 590219 additions and 0 deletions
70
libc/math/logf.c
Normal file
70
libc/math/logf.c
Normal file
|
@ -0,0 +1,70 @@
|
|||
/*
|
||||
* Single-precision log function.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "libc/math/math.h"
|
||||
#include "libc/math/libm.h"
|
||||
#include "libc/math/logf_data.h"
|
||||
|
||||
/*
|
||||
LOGF_TABLE_BITS = 4
|
||||
LOGF_POLY_ORDER = 4
|
||||
|
||||
ULP error: 0.818 (nearest rounding.)
|
||||
Relative error: 1.957 * 2^-26 (before rounding.)
|
||||
*/
|
||||
|
||||
#define T __logf_data.tab
|
||||
#define A __logf_data.poly
|
||||
#define Ln2 __logf_data.ln2
|
||||
#define N (1 << LOGF_TABLE_BITS)
|
||||
#define OFF 0x3f330000
|
||||
|
||||
float logf(float x)
|
||||
{
|
||||
double_t z, r, r2, y, y0, invc, logc;
|
||||
uint32_t ix, iz, tmp;
|
||||
int k, i;
|
||||
|
||||
ix = asuint(x);
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
|
||||
return 0;
|
||||
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
|
||||
/* x < 0x1p-126 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzerof(1);
|
||||
if (ix == 0x7f800000) /* log(inf) == inf. */
|
||||
return x;
|
||||
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
||||
return __math_invalidf(x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint(x * 0x1p23f);
|
||||
ix -= 23 << 23;
|
||||
}
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
|
||||
k = (int32_t)tmp >> 23; /* arithmetic shift */
|
||||
iz = ix - (tmp & 0x1ff << 23);
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = (double_t)asfloat(iz);
|
||||
|
||||
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
|
||||
r = z * invc - 1;
|
||||
y0 = logc + (double_t)k * Ln2;
|
||||
|
||||
/* Pipelined polynomial evaluation to approximate log1p(r). */
|
||||
r2 = r * r;
|
||||
y = A[1] * r + A[2];
|
||||
y = A[0] * r2 + y;
|
||||
y = y * r2 + (y0 + r);
|
||||
return eval_as_float(y);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue