mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-22 21:32:31 +00:00
Initial import
This commit is contained in:
commit
c91b3c5006
14915 changed files with 590219 additions and 0 deletions
184
libc/math/sqrt.c
Normal file
184
libc/math/sqrt.c
Normal file
|
@ -0,0 +1,184 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* 1. Normalization
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
* sqrt(x) = 2^k * sqrt(y)
|
||||
* 2. Bit by bit computation
|
||||
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
* i 0
|
||||
* i+1 2
|
||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
* i i i i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* -(i+1) 2
|
||||
* (q + 2 ) <= y. (2)
|
||||
* i
|
||||
* -(i+1)
|
||||
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* With some algebric manipulation, it is not difficult to see
|
||||
* that (2) is equivalent to
|
||||
* -(i+1)
|
||||
* s + 2 <= y (3)
|
||||
* i i
|
||||
*
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* i i
|
||||
* the following recurrence formula:
|
||||
* if (3) is false
|
||||
*
|
||||
* s = s , y = y ; (4)
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* otherwise,
|
||||
* -i -(i+1)
|
||||
* s = s + 2 , y = y - s - 2 (5)
|
||||
* i+1 i i+1 i i
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* in (3).
|
||||
* 3. Final rounding
|
||||
* After generating the 53 bits result, we compute one more bit.
|
||||
* Together with the remainder, we can decide whether the
|
||||
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
* (it will never equal to 1/2ulp).
|
||||
* The rounding mode can be detected by checking whether
|
||||
* huge + tiny is equal to huge, and whether huge - tiny is
|
||||
* equal to huge for some floating point number "huge" and "tiny".
|
||||
*
|
||||
* Special cases:
|
||||
* sqrt(+-0) = +-0 ... exact
|
||||
* sqrt(inf) = inf
|
||||
* sqrt(-ve) = NaN ... with invalid signal
|
||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
||||
*/
|
||||
|
||||
#include "libc/math/libm.h"
|
||||
|
||||
static const double tiny = 1.0e-300;
|
||||
|
||||
double sqrt(double x)
|
||||
{
|
||||
double z;
|
||||
int32_t sign = (int)0x80000000;
|
||||
int32_t ix0,s0,q,m,t,i;
|
||||
uint32_t r,t1,s1,ix1,q1;
|
||||
|
||||
EXTRACT_WORDS(ix0, ix1, x);
|
||||
|
||||
/* take care of Inf and NaN */
|
||||
if ((ix0&0x7ff00000) == 0x7ff00000) {
|
||||
return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
|
||||
}
|
||||
/* take care of zero */
|
||||
if (ix0 <= 0) {
|
||||
if (((ix0&~sign)|ix1) == 0)
|
||||
return x; /* sqrt(+-0) = +-0 */
|
||||
if (ix0 < 0)
|
||||
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
||||
}
|
||||
/* normalize x */
|
||||
m = ix0>>20;
|
||||
if (m == 0) { /* subnormal x */
|
||||
while (ix0 == 0) {
|
||||
m -= 21;
|
||||
ix0 |= (ix1>>11);
|
||||
ix1 <<= 21;
|
||||
}
|
||||
for (i=0; (ix0&0x00100000) == 0; i++)
|
||||
ix0<<=1;
|
||||
m -= i - 1;
|
||||
ix0 |= ix1>>(32-i);
|
||||
ix1 <<= i;
|
||||
}
|
||||
m -= 1023; /* unbias exponent */
|
||||
ix0 = (ix0&0x000fffff)|0x00100000;
|
||||
if (m & 1) { /* odd m, double x to make it even */
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
}
|
||||
m >>= 1; /* m = [m/2] */
|
||||
|
||||
/* generate sqrt(x) bit by bit */
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
||||
r = 0x00200000; /* r = moving bit from right to left */
|
||||
|
||||
while (r != 0) {
|
||||
t = s0 + r;
|
||||
if (t <= ix0) {
|
||||
s0 = t + r;
|
||||
ix0 -= t;
|
||||
q += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r >>= 1;
|
||||
}
|
||||
|
||||
r = sign;
|
||||
while (r != 0) {
|
||||
t1 = s1 + r;
|
||||
t = s0;
|
||||
if (t < ix0 || (t == ix0 && t1 <= ix1)) {
|
||||
s1 = t1 + r;
|
||||
if ((t1&sign) == sign && (s1&sign) == 0)
|
||||
s0++;
|
||||
ix0 -= t;
|
||||
if (ix1 < t1)
|
||||
ix0--;
|
||||
ix1 -= t1;
|
||||
q1 += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1&sign)>>31);
|
||||
ix1 += ix1;
|
||||
r >>= 1;
|
||||
}
|
||||
|
||||
/* use floating add to find out rounding direction */
|
||||
if ((ix0|ix1) != 0) {
|
||||
z = 1.0 - tiny; /* raise inexact flag */
|
||||
if (z >= 1.0) {
|
||||
z = 1.0 + tiny;
|
||||
if (q1 == (uint32_t)0xffffffff) {
|
||||
q1 = 0;
|
||||
q++;
|
||||
} else if (z > 1.0) {
|
||||
if (q1 == (uint32_t)0xfffffffe)
|
||||
q++;
|
||||
q1 += 2;
|
||||
} else
|
||||
q1 += q1 & 1;
|
||||
}
|
||||
}
|
||||
ix0 = (q>>1) + 0x3fe00000;
|
||||
ix1 = q1>>1;
|
||||
if (q&1)
|
||||
ix1 |= sign;
|
||||
INSERT_WORDS(z, ix0 + ((uint32_t)m << 20), ix1);
|
||||
return z;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue