mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-28 00:02:28 +00:00
Initial import
This commit is contained in:
commit
c91b3c5006
14915 changed files with 590219 additions and 0 deletions
70
libc/math/tan.c
Normal file
70
libc/math/tan.c
Normal file
|
@ -0,0 +1,70 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* tan(x)
|
||||
* Return tangent function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __tan ... tangent function on [-pi/4,pi/4]
|
||||
* __rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "libc/math/libm.h"
|
||||
|
||||
double tan(double x)
|
||||
{
|
||||
double y[2];
|
||||
uint32_t ix;
|
||||
unsigned n;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
if (ix <= 0x3fe921fb) {
|
||||
if (ix < 0x3e400000) { /* |x| < 2**-27 */
|
||||
/* raise inexact if x!=0 and underflow if subnormal */
|
||||
FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
|
||||
return x;
|
||||
}
|
||||
return __tan(x, 0.0, 0);
|
||||
}
|
||||
|
||||
/* tan(Inf or NaN) is NaN */
|
||||
if (ix >= 0x7ff00000)
|
||||
return x - x;
|
||||
|
||||
/* argument reduction */
|
||||
n = __rem_pio2(x, y);
|
||||
return __tan(y[0], y[1], n&1);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue