mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-23 22:02:27 +00:00
Initial import
This commit is contained in:
commit
c91b3c5006
14915 changed files with 590219 additions and 0 deletions
156
third_party/compiler_rt/comparedf2.c
vendored
Normal file
156
third_party/compiler_rt/comparedf2.c
vendored
Normal file
|
@ -0,0 +1,156 @@
|
|||
/* clang-format off */
|
||||
//===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is dual licensed under the MIT and the University of Illinois Open
|
||||
// Source Licenses. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// // This file implements the following soft-float comparison routines:
|
||||
//
|
||||
// __eqdf2 __gedf2 __unorddf2
|
||||
// __ledf2 __gtdf2
|
||||
// __ltdf2
|
||||
// __nedf2
|
||||
//
|
||||
// The semantics of the routines grouped in each column are identical, so there
|
||||
// is a single implementation for each, and wrappers to provide the other names.
|
||||
//
|
||||
// The main routines behave as follows:
|
||||
//
|
||||
// __ledf2(a,b) returns -1 if a < b
|
||||
// 0 if a == b
|
||||
// 1 if a > b
|
||||
// 1 if either a or b is NaN
|
||||
//
|
||||
// __gedf2(a,b) returns -1 if a < b
|
||||
// 0 if a == b
|
||||
// 1 if a > b
|
||||
// -1 if either a or b is NaN
|
||||
//
|
||||
// __unorddf2(a,b) returns 0 if both a and b are numbers
|
||||
// 1 if either a or b is NaN
|
||||
//
|
||||
// Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
|
||||
// NaN values.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
STATIC_YOINK("huge_compiler_rt_license");
|
||||
|
||||
#define DOUBLE_PRECISION
|
||||
#include "third_party/compiler_rt/fp_lib.inc"
|
||||
|
||||
enum LE_RESULT {
|
||||
LE_LESS = -1,
|
||||
LE_EQUAL = 0,
|
||||
LE_GREATER = 1,
|
||||
LE_UNORDERED = 1
|
||||
};
|
||||
|
||||
COMPILER_RT_ABI enum LE_RESULT
|
||||
__ledf2(fp_t a, fp_t b) {
|
||||
|
||||
const srep_t aInt = toRep(a);
|
||||
const srep_t bInt = toRep(b);
|
||||
const rep_t aAbs = aInt & absMask;
|
||||
const rep_t bAbs = bInt & absMask;
|
||||
|
||||
// If either a or b is NaN, they are unordered.
|
||||
if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
|
||||
|
||||
// If a and b are both zeros, they are equal.
|
||||
if ((aAbs | bAbs) == 0) return LE_EQUAL;
|
||||
|
||||
// If at least one of a and b is positive, we get the same result comparing
|
||||
// a and b as signed integers as we would with a floating-point compare.
|
||||
if ((aInt & bInt) >= 0) {
|
||||
if (aInt < bInt) return LE_LESS;
|
||||
else if (aInt == bInt) return LE_EQUAL;
|
||||
else return LE_GREATER;
|
||||
}
|
||||
|
||||
// Otherwise, both are negative, so we need to flip the sense of the
|
||||
// comparison to get the correct result. (This assumes a twos- or ones-
|
||||
// complement integer representation; if integers are represented in a
|
||||
// sign-magnitude representation, then this flip is incorrect).
|
||||
else {
|
||||
if (aInt > bInt) return LE_LESS;
|
||||
else if (aInt == bInt) return LE_EQUAL;
|
||||
else return LE_GREATER;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__ELF__)
|
||||
// Alias for libgcc compatibility
|
||||
FNALIAS(__cmpdf2, __ledf2);
|
||||
#endif
|
||||
|
||||
enum GE_RESULT {
|
||||
GE_LESS = -1,
|
||||
GE_EQUAL = 0,
|
||||
GE_GREATER = 1,
|
||||
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
|
||||
};
|
||||
|
||||
COMPILER_RT_ABI enum GE_RESULT
|
||||
__gedf2(fp_t a, fp_t b) {
|
||||
|
||||
const srep_t aInt = toRep(a);
|
||||
const srep_t bInt = toRep(b);
|
||||
const rep_t aAbs = aInt & absMask;
|
||||
const rep_t bAbs = bInt & absMask;
|
||||
|
||||
if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
|
||||
if ((aAbs | bAbs) == 0) return GE_EQUAL;
|
||||
if ((aInt & bInt) >= 0) {
|
||||
if (aInt < bInt) return GE_LESS;
|
||||
else if (aInt == bInt) return GE_EQUAL;
|
||||
else return GE_GREATER;
|
||||
} else {
|
||||
if (aInt > bInt) return GE_LESS;
|
||||
else if (aInt == bInt) return GE_EQUAL;
|
||||
else return GE_GREATER;
|
||||
}
|
||||
}
|
||||
|
||||
COMPILER_RT_ABI int
|
||||
__unorddf2(fp_t a, fp_t b) {
|
||||
const rep_t aAbs = toRep(a) & absMask;
|
||||
const rep_t bAbs = toRep(b) & absMask;
|
||||
return aAbs > infRep || bAbs > infRep;
|
||||
}
|
||||
|
||||
// The following are alternative names for the preceding routines.
|
||||
|
||||
COMPILER_RT_ABI enum LE_RESULT
|
||||
__eqdf2(fp_t a, fp_t b) {
|
||||
return __ledf2(a, b);
|
||||
}
|
||||
|
||||
COMPILER_RT_ABI enum LE_RESULT
|
||||
__ltdf2(fp_t a, fp_t b) {
|
||||
return __ledf2(a, b);
|
||||
}
|
||||
|
||||
COMPILER_RT_ABI enum LE_RESULT
|
||||
__nedf2(fp_t a, fp_t b) {
|
||||
return __ledf2(a, b);
|
||||
}
|
||||
|
||||
COMPILER_RT_ABI enum GE_RESULT
|
||||
__gtdf2(fp_t a, fp_t b) {
|
||||
return __gedf2(a, b);
|
||||
}
|
||||
|
||||
#if defined(__ARM_EABI__)
|
||||
#if defined(COMPILER_RT_ARMHF_TARGET)
|
||||
AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) {
|
||||
return __unorddf2(a, b);
|
||||
}
|
||||
#else
|
||||
AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) COMPILER_RT_ALIAS(__unorddf2);
|
||||
#endif
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue