mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-06-27 14:58:30 +00:00
Correct more typos (#500)
This commit is contained in:
parent
8b469389f6
commit
d4000bb8f7
30 changed files with 39 additions and 39 deletions
|
@ -52,7 +52,7 @@ double __cbrt(double x) {
|
|||
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
|
||||
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
|
||||
* floating point representation, for finite positive normal values,
|
||||
* ordinary integer divison of the value in bits magically gives
|
||||
* ordinary integer division of the value in bits magically gives
|
||||
* almost exactly the RHS of the above provided we first subtract the
|
||||
* exponent bias (1023 for doubles) and later add it back. We do the
|
||||
* subtraction virtually to keep e >= 0 so that ordinary integer
|
||||
|
|
|
@ -63,7 +63,7 @@ asm(".include \"libc/disclaimer.inc\"");
|
|||
* = log(6.3*5.3) + lgamma(5.3)
|
||||
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
||||
* 2. Polynomial approximation of lgamma around its
|
||||
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* minimum ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
||||
* Let z = x-ymin;
|
||||
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
||||
|
|
|
@ -63,7 +63,7 @@ asm(".include \"libc/disclaimer.inc\"");
|
|||
* = log(6.3*5.3) + lgamma(5.3)
|
||||
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
||||
* 2. Polynomial approximation of lgamma around its
|
||||
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* minimum ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
||||
* Let z = x-ymin;
|
||||
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
||||
|
|
|
@ -79,14 +79,14 @@ asm(".include \"libc/disclaimer.inc\"");
|
|||
* z = (z-x[i])*2**24
|
||||
*
|
||||
*
|
||||
* y[] ouput result in an array of double precision numbers.
|
||||
* y[] output result in an array of double precision numbers.
|
||||
* The dimension of y[] is:
|
||||
* 24-bit precision 1
|
||||
* 53-bit precision 2
|
||||
* 64-bit precision 2
|
||||
* 113-bit precision 3
|
||||
* The actual value is the sum of them. Thus for 113-bit
|
||||
* precison, one may have to do something like:
|
||||
* precision, one may have to do something like:
|
||||
*
|
||||
* long double t,w,r_head, r_tail;
|
||||
* t = (long double)y[2] + (long double)y[1];
|
||||
|
@ -117,7 +117,7 @@ asm(".include \"libc/disclaimer.inc\"");
|
|||
* jk+1 must be 2 larger than you might expect so that our
|
||||
* recomputation test works. (Up to 24 bits in the integer
|
||||
* part (the 24 bits of it that we compute) and 23 bits in
|
||||
* the fraction part may be lost to cancelation before we
|
||||
* the fraction part may be lost to cancellation before we
|
||||
* recompute.)
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue