Remove callback from cosmoaudio API

Using callbacks is still problematic with cosmo_dlopen() due to the need
to restore the TLS register. So using callbacks is even more strict than
using signal handlers. We are better off introducing a cosmoaudio_poll()
function. It makes the API more UNIX-like. How bad could the latency be?
This commit is contained in:
Justine Tunney 2024-09-07 17:42:15 -07:00
parent d99f066114
commit d50d954a3c
No known key found for this signature in database
GPG key ID: BE714B4575D6E328
17 changed files with 433 additions and 158 deletions

View file

@ -493,6 +493,7 @@ COSMOPOLITAN_OBJECTS = \
COSMOPOLITAN_H_PKGS = \ COSMOPOLITAN_H_PKGS = \
APE \ APE \
DSP_AUDIO \
LIBC \ LIBC \
LIBC_CALLS \ LIBC_CALLS \
LIBC_ELF \ LIBC_ELF \

View file

@ -58,7 +58,9 @@ static struct {
typeof(cosmoaudio_open) *open; typeof(cosmoaudio_open) *open;
typeof(cosmoaudio_close) *close; typeof(cosmoaudio_close) *close;
typeof(cosmoaudio_write) *write; typeof(cosmoaudio_write) *write;
typeof(cosmoaudio_flush) *flush;
typeof(cosmoaudio_read) *read; typeof(cosmoaudio_read) *read;
typeof(cosmoaudio_poll) *poll;
} g_audio; } g_audio;
static const char *cosmoaudio_tmp_dir(void) { static const char *cosmoaudio_tmp_dir(void) {
@ -232,7 +234,9 @@ WeAreGood:
g_audio.open = cosmo_dlsym(handle, "cosmoaudio_open"); g_audio.open = cosmo_dlsym(handle, "cosmoaudio_open");
g_audio.close = cosmo_dlsym(handle, "cosmoaudio_close"); g_audio.close = cosmo_dlsym(handle, "cosmoaudio_close");
g_audio.write = cosmo_dlsym(handle, "cosmoaudio_write"); g_audio.write = cosmo_dlsym(handle, "cosmoaudio_write");
g_audio.flush = cosmo_dlsym(handle, "cosmoaudio_flush");
g_audio.read = cosmo_dlsym(handle, "cosmoaudio_read"); g_audio.read = cosmo_dlsym(handle, "cosmoaudio_read");
g_audio.poll = cosmo_dlsym(handle, "cosmoaudio_poll");
} }
static void cosmoaudio_init(void) { static void cosmoaudio_init(void) {
@ -295,3 +299,34 @@ COSMOAUDIO_ABI int cosmoaudio_read(struct CosmoAudio *ca, float *data,
cosmoaudio_describe_status(sbuf, sizeof(sbuf), status)); cosmoaudio_describe_status(sbuf, sizeof(sbuf), status));
return status; return status;
} }
COSMOAUDIO_ABI int cosmoaudio_flush(struct CosmoAudio *ca) {
int status;
char sbuf[32];
if (g_audio.flush)
status = g_audio.flush(ca);
else
status = COSMOAUDIO_ELINK;
DATATRACE("cosmoaudio_flush(%p) → %s", ca,
cosmoaudio_describe_status(sbuf, sizeof(sbuf), status));
return status;
}
COSMOAUDIO_ABI int cosmoaudio_poll(struct CosmoAudio *ca,
int *in_out_readFrames,
int *in_out_writeFrames) {
int status;
char sbuf[32];
char fbuf[2][20];
if (g_audio.poll)
status = g_audio.poll(ca, in_out_readFrames, in_out_writeFrames);
else
status = COSMOAUDIO_ELINK;
DATATRACE("cosmoaudio_poll(%p, %s, %s) → %s", ca,
cosmoaudio_describe_poll_frames(fbuf[0], sizeof(fbuf[0]),
in_out_readFrames),
cosmoaudio_describe_poll_frames(fbuf[1], sizeof(fbuf[1]),
in_out_writeFrames),
cosmoaudio_describe_status(sbuf, sizeof(sbuf), status));
return status;
}

View file

@ -3,6 +3,7 @@
# nmake /f Makefile.msvc check # nmake /f Makefile.msvc check
# nmake /f Makefile.msvc MODE=debug check # nmake /f Makefile.msvc MODE=debug check
# #
# Note: MSVC 2019 makes the DLL 64kb smaller than MSVC 2022.
# Compiler and linker # Compiler and linker
CC=cl CC=cl

View file

@ -39,15 +39,16 @@
#endif #endif
struct CosmoAudio { struct CosmoAudio {
ma_device device;
ma_pcm_rb input;
ma_pcm_rb output;
ma_uint32 sampleRate;
ma_uint32 channels;
ma_uint32 periods;
enum CosmoAudioDeviceType deviceType; enum CosmoAudioDeviceType deviceType;
cosmoaudio_data_callback_f* dataCallback; ma_uint32 outputBufferFrames;
void* argument; ma_uint32 inputBufferFrames;
int sampleRate;
int channels;
int isLeft;
ma_device device;
ma_pcm_rb output;
ma_pcm_rb input;
ma_event event;
}; };
static int read_ring_buffer(ma_pcm_rb* rb, float* pOutput, ma_uint32 frameCount, static int read_ring_buffer(ma_pcm_rb* rb, float* pOutput, ma_uint32 frameCount,
@ -69,8 +70,10 @@ static int read_ring_buffer(ma_pcm_rb* rb, float* pOutput, ma_uint32 frameCount,
framesToRead * channels * sizeof(float)); framesToRead * channels * sizeof(float));
result = ma_pcm_rb_commit_read(rb, framesToRead); result = ma_pcm_rb_commit_read(rb, framesToRead);
if (result != MA_SUCCESS) { if (result != MA_SUCCESS) {
if (result == MA_AT_END) if (result == MA_AT_END) {
framesRead += framesToRead;
break; break;
}
LOG("ma_pcm_rb_commit_read failed: %s\n", ma_result_description(result)); LOG("ma_pcm_rb_commit_read failed: %s\n", ma_result_description(result));
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
} }
@ -99,8 +102,10 @@ static int write_ring_buffer(ma_pcm_rb* rb, const float* pInput,
framesToWrite * channels * sizeof(float)); framesToWrite * channels * sizeof(float));
result = ma_pcm_rb_commit_write(rb, framesToWrite); result = ma_pcm_rb_commit_write(rb, framesToWrite);
if (result != MA_SUCCESS) { if (result != MA_SUCCESS) {
if (result == MA_AT_END) if (result == MA_AT_END) {
framesWritten += framesToWrite;
break; break;
}
LOG("ma_pcm_rb_commit_write failed: %s\n", ma_result_description(result)); LOG("ma_pcm_rb_commit_write failed: %s\n", ma_result_description(result));
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
} }
@ -111,15 +116,38 @@ static int write_ring_buffer(ma_pcm_rb* rb, const float* pInput,
static void data_callback_f32(ma_device* pDevice, float* pOutput, static void data_callback_f32(ma_device* pDevice, float* pOutput,
const float* pInput, ma_uint32 frameCount) { const float* pInput, ma_uint32 frameCount) {
struct CosmoAudio* ca = (struct CosmoAudio*)pDevice->pUserData; struct CosmoAudio* ca = (struct CosmoAudio*)pDevice->pUserData;
if (ca->dataCallback) { if (ca->deviceType & kCosmoAudioDeviceTypePlayback) {
ca->dataCallback(ca, pOutput, pInput, frameCount, ca->channels, //
ca->argument); // "By default, miniaudio will pre-silence the data callback's
} else { // output buffer. If you know that you will always write valid data
if (ca->deviceType & kCosmoAudioDeviceTypePlayback) // to the output buffer you can disable pre-silencing by setting
read_ring_buffer(&ca->output, pOutput, frameCount, ca->channels); // the noPreSilence config option in the device config to true."
if (ca->deviceType & kCosmoAudioDeviceTypeCapture) //
write_ring_buffer(&ca->input, pInput, frameCount, ca->channels); // —Quoth miniaudio documentation § 16.1. Low Level API
//
if (ca->isLeft) {
int framesCopied =
read_ring_buffer(&ca->output, pOutput, frameCount, ca->channels);
if (framesCopied < (int)frameCount)
ca->isLeft = 0;
} else {
// TODO(jart): Maybe we should stretch the audio too short?
int frameOffset;
int availableFrames = ma_pcm_rb_available_read(&ca->output);
if (availableFrames >= (int)frameCount) {
frameOffset = 0;
} else {
frameOffset = frameCount - availableFrames;
frameCount = availableFrames;
}
read_ring_buffer(&ca->output, pOutput + frameOffset * ca->channels,
frameCount, ca->channels);
ca->isLeft = 1;
}
} }
if (ca->deviceType & kCosmoAudioDeviceTypeCapture)
write_ring_buffer(&ca->input, pInput, frameCount, ca->channels);
ma_event_signal(&ca->event);
} }
static void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, static void data_callback(ma_device* pDevice, void* pOutput, const void* pInput,
@ -156,7 +184,7 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (options->sizeofThis < (int)sizeof(struct CosmoAudioOpenOptions)) if (options->sizeofThis < (int)sizeof(struct CosmoAudioOpenOptions))
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (options->periods < 0) if (options->bufferFrames < 0)
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (options->sampleRate < 8000) if (options->sampleRate < 8000)
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
@ -170,14 +198,18 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
// Allocate cosmo audio object. // Allocate cosmo audio object.
struct CosmoAudio* ca; struct CosmoAudio* ca;
if (!(ca = (struct CosmoAudio*)calloc(1, sizeof(struct CosmoAudio)))) ca = (struct CosmoAudio*)calloc(1, sizeof(struct CosmoAudio));
if (!ca)
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
ca->channels = options->channels; ca->channels = options->channels;
ca->sampleRate = options->sampleRate; ca->sampleRate = options->sampleRate;
ca->deviceType = options->deviceType; ca->deviceType = options->deviceType;
ca->periods = options->periods ? options->periods : 10;
ca->dataCallback = options->dataCallback; // Create win32-style condition variable.
ca->argument = options->argument; if (ma_event_init(&ca->event) != MA_SUCCESS) {
free(ca);
return COSMOAUDIO_ERROR;
}
// Initialize device. // Initialize device.
ma_result result; ma_result result;
@ -197,18 +229,26 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
deviceConfig.pUserData = ca; deviceConfig.pUserData = ca;
result = ma_device_init(NULL, &deviceConfig, &ca->device); result = ma_device_init(NULL, &deviceConfig, &ca->device);
if (result != MA_SUCCESS) { if (result != MA_SUCCESS) {
ma_event_uninit(&ca->event);
free(ca); free(ca);
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
} }
// Initialize the speaker ring buffer. // Initialize the speaker ring buffer.
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypePlayback)) { int period = ca->device.playback.internalPeriodSizeInFrames;
result = ma_pcm_rb_init( if (!options->bufferFrames) {
ma_format_f32, ca->channels, ca->outputBufferFrames = period * 10;
ca->device.playback.internalPeriodSizeInFrames * ca->periods, NULL, } else if (options->bufferFrames < period * 2) {
NULL, &ca->output); ca->outputBufferFrames = period * 2;
} else {
ca->outputBufferFrames = options->bufferFrames;
}
if (ca->deviceType & kCosmoAudioDeviceTypePlayback) {
result = ma_pcm_rb_init(ma_format_f32, ca->channels, ca->outputBufferFrames,
NULL, NULL, &ca->output);
if (result != MA_SUCCESS) { if (result != MA_SUCCESS) {
ma_device_uninit(&ca->device); ma_device_uninit(&ca->device);
ma_event_uninit(&ca->event);
free(ca); free(ca);
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
} }
@ -216,15 +256,22 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
} }
// Initialize the microphone ring buffer. // Initialize the microphone ring buffer.
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypeCapture)) { period = ca->device.capture.internalPeriodSizeInFrames;
result = ma_pcm_rb_init( if (!options->bufferFrames) {
ma_format_f32, ca->channels, ca->inputBufferFrames = period * 10;
ca->device.capture.internalPeriodSizeInFrames * ca->periods, NULL, NULL, } else if (options->bufferFrames < period * 2) {
&ca->input); ca->inputBufferFrames = period * 2;
} else {
ca->inputBufferFrames = options->bufferFrames;
}
if (ca->deviceType & kCosmoAudioDeviceTypeCapture) {
result = ma_pcm_rb_init(ma_format_f32, ca->channels, ca->inputBufferFrames,
NULL, NULL, &ca->input);
if (result != MA_SUCCESS) { if (result != MA_SUCCESS) {
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypePlayback)) if (ca->deviceType & kCosmoAudioDeviceTypePlayback)
ma_pcm_rb_uninit(&ca->output); ma_pcm_rb_uninit(&ca->output);
ma_device_uninit(&ca->device); ma_device_uninit(&ca->device);
ma_event_uninit(&ca->event);
free(ca); free(ca);
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
} }
@ -233,11 +280,12 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
// Start audio playback. // Start audio playback.
if (ma_device_start(&ca->device) != MA_SUCCESS) { if (ma_device_start(&ca->device) != MA_SUCCESS) {
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypeCapture)) if (ca->deviceType & kCosmoAudioDeviceTypePlayback)
ma_pcm_rb_uninit(&ca->input);
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypePlayback))
ma_pcm_rb_uninit(&ca->output); ma_pcm_rb_uninit(&ca->output);
if (ca->deviceType & kCosmoAudioDeviceTypeCapture)
ma_pcm_rb_uninit(&ca->input);
ma_device_uninit(&ca->device); ma_device_uninit(&ca->device);
ma_event_uninit(&ca->event);
free(ca); free(ca);
return COSMOAUDIO_ERROR; return COSMOAUDIO_ERROR;
} }
@ -249,8 +297,13 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
/** /**
* Closes audio device and frees all associated resources. * Closes audio device and frees all associated resources.
* *
* This function is non-blocking and will drop buffered audio. In
* playback mode, you need to call cosmoaudio_flush() to ensure data
* supplied by cosmoaudio_write() gets played on your speaker.
*
* Calling this function twice on the same object will result in * Calling this function twice on the same object will result in
* undefined behavior. * undefined behavior. Even if this function fails, the `ca` will be
* freed to the greatest extent possible.
* *
* @param ca is CosmoAudio object returned earlier by cosmoaudio_open() * @param ca is CosmoAudio object returned earlier by cosmoaudio_open()
* @return 0 on success, or negative error code on failure * @return 0 on success, or negative error code on failure
@ -258,11 +311,12 @@ COSMOAUDIO_ABI int cosmoaudio_open( //
COSMOAUDIO_ABI int cosmoaudio_close(struct CosmoAudio* ca) { COSMOAUDIO_ABI int cosmoaudio_close(struct CosmoAudio* ca) {
if (!ca) if (!ca)
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
ma_device_uninit(&ca->device); if (ca->deviceType & kCosmoAudioDeviceTypePlayback)
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypePlayback))
ma_pcm_rb_uninit(&ca->output); ma_pcm_rb_uninit(&ca->output);
if (!ca->dataCallback && (ca->deviceType & kCosmoAudioDeviceTypeCapture)) if (ca->deviceType & kCosmoAudioDeviceTypeCapture)
ma_pcm_rb_uninit(&ca->input); ma_pcm_rb_uninit(&ca->input);
ma_device_uninit(&ca->device);
ma_event_uninit(&ca->event);
free(ca); free(ca);
return COSMOAUDIO_SUCCESS; return COSMOAUDIO_SUCCESS;
} }
@ -289,10 +343,10 @@ COSMOAUDIO_ABI int cosmoaudio_write(struct CosmoAudio* ca, const float* data,
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (frames < 0) if (frames < 0)
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (ca->dataCallback)
return COSMOAUDIO_EINVAL;
if (!(ca->deviceType & kCosmoAudioDeviceTypePlayback)) if (!(ca->deviceType & kCosmoAudioDeviceTypePlayback))
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (1u + frames > ca->outputBufferFrames)
return COSMOAUDIO_ENOBUF;
if (!frames) if (!frames)
return 0; return 0;
if (!data) if (!data)
@ -322,8 +376,6 @@ COSMOAUDIO_ABI int cosmoaudio_read(struct CosmoAudio* ca, float* data,
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (frames < 0) if (frames < 0)
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (ca->dataCallback)
return COSMOAUDIO_EINVAL;
if (!(ca->deviceType & kCosmoAudioDeviceTypeCapture)) if (!(ca->deviceType & kCosmoAudioDeviceTypeCapture))
return COSMOAUDIO_EINVAL; return COSMOAUDIO_EINVAL;
if (!frames) if (!frames)
@ -333,20 +385,80 @@ COSMOAUDIO_ABI int cosmoaudio_read(struct CosmoAudio* ca, float* data,
return read_ring_buffer(&ca->input, data, frames, ca->channels); return read_ring_buffer(&ca->input, data, frames, ca->channels);
} }
#ifdef _MSC_VER /**
#include <Windows.h> * Waits for read and/or write to become possible.
BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, *
LPVOID lpReserved) { * @param ca is CosmoAudio object returned earlier by cosmoaudio_open()
switch (ul_reason_for_call) { * @param in_out_readFrames if non-NULL specifies how many frames of
case DLL_PROCESS_ATTACH: * capture data be immediately readable by cosmoaudio_read() before
case DLL_THREAD_ATTACH: * this can return; it must not exceed the buffer size; on return
case DLL_THREAD_DETACH: * this will be set to the actual number of frames in the buffer;
case DLL_PROCESS_DETACH: * if the caller supplies a zero then this call is a non-blocking
break; * way to query buffer sizes
* @param in_out_writeFrames if non-NULL specifies how many frames of
* capture data be immediately writable by cosmoaudio_write() before
* this can return; it must not exceed the buffer size; on return
* this will be set to the actual number of frames in the buffer;
* if the caller supplies a zero then this call is a non-blocking
* way to query buffer sizes
* @return 0 on success, or negative error code on error
*/
COSMOAUDIO_ABI int cosmoaudio_poll(struct CosmoAudio* ca,
int* in_out_readFrames,
int* in_out_writeFrames) {
if (!ca)
return COSMOAUDIO_EINVAL;
if (!in_out_readFrames && !in_out_writeFrames)
return COSMOAUDIO_EINVAL;
if (in_out_readFrames && !(ca->deviceType & kCosmoAudioDeviceTypeCapture))
return COSMOAUDIO_EINVAL;
if (in_out_writeFrames && !(ca->deviceType & kCosmoAudioDeviceTypePlayback))
return COSMOAUDIO_EINVAL;
if (in_out_readFrames && 1u + *in_out_readFrames > ca->inputBufferFrames)
return COSMOAUDIO_ENOBUF;
if (in_out_writeFrames && 1u + *in_out_writeFrames > ca->outputBufferFrames)
return COSMOAUDIO_ENOBUF;
for (;;) {
int done = 0;
ma_uint32 readable = 0;
ma_uint32 writable = 0;
if (in_out_readFrames) {
readable = ma_pcm_rb_available_read(&ca->input);
done |= readable >= (ma_uint32)*in_out_readFrames;
}
if (in_out_writeFrames) {
writable = ma_pcm_rb_available_write(&ca->output);
done |= writable >= (ma_uint32)*in_out_writeFrames;
}
if (done) {
if (in_out_readFrames)
*in_out_readFrames = readable;
if (in_out_writeFrames)
*in_out_writeFrames = writable;
return COSMOAUDIO_SUCCESS;
}
if (ma_event_wait(&ca->event) != MA_SUCCESS)
return COSMOAUDIO_ERROR;
}
}
/**
* Waits for written samples to be sent to device.
*
* This function is only valid to call in playback or duplex mode.
*
* @param ca is CosmoAudio object returned earlier by cosmoaudio_open()
* @return 0 on success, or negative error code on failure
*/
COSMOAUDIO_ABI int cosmoaudio_flush(struct CosmoAudio* ca) {
if (!ca)
return COSMOAUDIO_EINVAL;
if (!(ca->deviceType & kCosmoAudioDeviceTypePlayback))
return COSMOAUDIO_EINVAL;
for (;;) {
if (!ma_pcm_rb_available_read(&ca->output))
return COSMOAUDIO_SUCCESS;
if (ma_event_wait(&ca->event) != MA_SUCCESS)
return COSMOAUDIO_ERROR;
} }
return TRUE;
(void)hModule;
(void)lpReserved;
(void)ul_reason_for_call;
} }
#endif

Binary file not shown.

View file

@ -21,6 +21,7 @@
#define COSMOAUDIO_ERROR -1 // unspecified error #define COSMOAUDIO_ERROR -1 // unspecified error
#define COSMOAUDIO_EINVAL -2 // invalid parameters passed to api #define COSMOAUDIO_EINVAL -2 // invalid parameters passed to api
#define COSMOAUDIO_ELINK -3 // loading cosmoaudio dso failed #define COSMOAUDIO_ELINK -3 // loading cosmoaudio dso failed
#define COSMOAUDIO_ENOBUF -4 // invalid buffering parameters
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -28,14 +29,6 @@ extern "C" {
struct CosmoAudio; struct CosmoAudio;
typedef void cosmoaudio_data_callback_f( //
struct CosmoAudio *ca, //
float *outputSamples, //
const float *inputSamples, //
int frameCount, //
int channels, //
void *argument);
enum CosmoAudioDeviceType { enum CosmoAudioDeviceType {
kCosmoAudioDeviceTypePlayback = 1, kCosmoAudioDeviceTypePlayback = 1,
kCosmoAudioDeviceTypeCapture = 2, kCosmoAudioDeviceTypeCapture = 2,
@ -62,20 +55,10 @@ struct CosmoAudioOpenOptions {
// for mono or 2 for stereo. // for mono or 2 for stereo.
int channels; int channels;
// Number of periods in ring buffer. Set to 0 for default. Higher // Number of frames in each ring buffer. A frame consists of a PCM
// numbers (e.g. 20) means more buffering. Lower numbers (e.g. 2) // sample for each channel. Set to 0 for default. If this is less than
// means less buffering. This is ignored if callback is specified. // the device period size times two, it'll be increased to that value.
int periods; int bufferFrames;
// If callback is NULL, then cosmoaudio_write() and cosmoaudio_read()
// should be used, which ring buffer audio to the default internal
// routine. Setting this callback to non-NULL puts CosmoAudio in
// manual mode, where the callback is responsible for copying PCM
// samples each time the device calls this.
cosmoaudio_data_callback_f *dataCallback;
// This is an arbitrary value passed to the callback.
void *argument;
}; };
COSMOAUDIO_API int cosmoaudio_version(void) COSMOAUDIO_ABI; COSMOAUDIO_API int cosmoaudio_version(void) COSMOAUDIO_ABI;
@ -95,12 +78,22 @@ COSMOAUDIO_API int cosmoaudio_write( //
int frameCount // int frameCount //
) COSMOAUDIO_ABI; ) COSMOAUDIO_ABI;
COSMOAUDIO_API int cosmoaudio_flush( //
struct CosmoAudio *ca //
) COSMOAUDIO_ABI;
COSMOAUDIO_API int cosmoaudio_read( // COSMOAUDIO_API int cosmoaudio_read( //
struct CosmoAudio *ca, // struct CosmoAudio *ca, //
float *out_samples, // float *out_samples, //
int frameCount // int frameCount //
) COSMOAUDIO_ABI; ) COSMOAUDIO_ABI;
COSMOAUDIO_API int cosmoaudio_poll( //
struct CosmoAudio *ca, //
int *in_out_readFrames, //
int *in_out_writeFrames //
) COSMOAUDIO_ABI;
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View file

@ -9,50 +9,68 @@
#endif #endif
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h>
#include <time.h> #include <time.h>
#include "cosmoaudio.h" #include "cosmoaudio.h"
#define SAMPLING_RATE 44100
#define WAVE_INTERVAL 440
#define CHANNELS 2
#ifndef M_PIf #ifndef M_PIf
#define M_PIf 3.14159265358979323846f #define M_PIf 3.14159265358979323846f
#endif #endif
int g_hz = 44100;
int g_channels = 2;
int g_generation = 0;
int g_freq = 440;
void data_callback(struct CosmoAudio *ca, float *outputSamples,
const float *inputSamples, int frameCount, int channels,
void *argument) {
for (int i = 0; i < frameCount; i++) {
float t = (float)g_generation++ / g_hz;
if (g_generation == g_hz)
g_generation = 0;
float s = sinf(2 * M_PIf * g_freq * t);
for (int j = 0; j < channels; j++)
outputSamples[i * channels + j] = s;
}
(void)inputSamples;
(void)argument;
(void)ca;
}
int main() { int main() {
struct CosmoAudioOpenOptions cao = {}; struct CosmoAudioOpenOptions cao = {0};
cao.sizeofThis = sizeof(struct CosmoAudioOpenOptions); cao.sizeofThis = sizeof(struct CosmoAudioOpenOptions);
cao.deviceType = kCosmoAudioDeviceTypePlayback; cao.deviceType = kCosmoAudioDeviceTypePlayback;
cao.sampleRate = g_hz; cao.sampleRate = SAMPLING_RATE;
cao.channels = g_channels; cao.channels = CHANNELS;
cao.dataCallback = data_callback;
int status;
struct CosmoAudio *ca; struct CosmoAudio *ca;
if (cosmoaudio_open(&ca, &cao) != COSMOAUDIO_SUCCESS) { status = cosmoaudio_open(&ca, &cao);
fprintf(stderr, "failed to open audio\n"); if (status != COSMOAUDIO_SUCCESS) {
fprintf(stderr, "failed to open audio: %d\n", status);
return 1; return 1;
} }
fgetc(stdin); float buf[256 * CHANNELS];
for (int g = 0; g < SAMPLING_RATE;) {
int frames = 1;
status = cosmoaudio_poll(ca, NULL, &frames);
if (status != COSMOAUDIO_SUCCESS) {
fprintf(stderr, "failed to poll output: %d\n", status);
return 2;
}
if (frames > 256)
frames = 256;
if (frames > SAMPLING_RATE - g)
frames = SAMPLING_RATE - g;
for (int f = 0; f < frames; ++f) {
float t = (float)g++ / SAMPLING_RATE;
float s = sinf(2 * M_PIf * WAVE_INTERVAL * t);
for (int c = 0; c < CHANNELS; c++)
buf[f * CHANNELS + c] = s;
}
status = cosmoaudio_write(ca, buf, frames);
if (status != frames) {
fprintf(stderr, "failed to write output: %d\n", status);
return 3;
}
}
cosmoaudio_close(ca); status = cosmoaudio_flush(ca);
if (status != COSMOAUDIO_SUCCESS) {
fprintf(stderr, "failed to flush output: %d\n", status);
return 4;
}
status = cosmoaudio_close(ca);
if (status != COSMOAUDIO_SUCCESS) {
fprintf(stderr, "failed to close audio: %d\n", status);
return 5;
}
} }

View file

@ -34,6 +34,8 @@ const char *cosmoaudio_describe_status(char *buf, int n, int status) {
return "COSMOAUDIO_EINVAL"; return "COSMOAUDIO_EINVAL";
case COSMOAUDIO_ELINK: case COSMOAUDIO_ELINK:
return "COSMOAUDIO_ELINK"; return "COSMOAUDIO_ELINK";
case COSMOAUDIO_ENOBUF:
return "COSMOAUDIO_ENOBUF";
default: default:
ksnprintf(buf, n, "%d", status); ksnprintf(buf, n, "%d", status);
return buf; return buf;
@ -81,24 +83,11 @@ const char *cosmoaudio_describe_open_options(
gotsome = true; gotsome = true;
} }
if (options->dataCallback) { if (options->bufferFrames) {
if (gotsome) if (gotsome)
append(", "); append(", ");
append(".dataCallback=%t", options->dataCallback); append(".bufferFrames=%d", options->bufferFrames);
gotsome = true; gotsome = true;
if (options->argument) {
if (gotsome)
append(", ");
append(".argument=%p", options->argument);
gotsome = true;
}
} else {
if (options->periods) {
if (gotsome)
append(", ");
append(".periods=%d", options->periods);
gotsome = true;
}
} }
if (options->sizeofThis) { if (options->sizeofThis) {
@ -111,3 +100,15 @@ const char *cosmoaudio_describe_open_options(
append("}"); append("}");
return buf; return buf;
} }
const char *cosmoaudio_describe_poll_frames(char *buf, int n,
int *in_out_frames) {
if (!in_out_frames)
return "NULL";
if (kisdangerous(in_out_frames)) {
ksnprintf(buf, n, "%p", in_out_frames);
return buf;
}
ksnprintf(buf, n, "[%d]", *in_out_frames);
return buf;
}

View file

@ -6,6 +6,7 @@ COSMOPOLITAN_C_START_
const char *cosmoaudio_describe_status(char *, int, int); const char *cosmoaudio_describe_status(char *, int, int);
const char *cosmoaudio_describe_open_options( const char *cosmoaudio_describe_open_options(
char *, int, const struct CosmoAudioOpenOptions *); char *, int, const struct CosmoAudioOpenOptions *);
const char *cosmoaudio_describe_poll_frames(char *, int, int *);
COSMOPOLITAN_C_END_ COSMOPOLITAN_C_END_
#endif /* COSMOPOLITAN_DSP_AUDIO_DESCRIBE_H_ */ #endif /* COSMOPOLITAN_DSP_AUDIO_DESCRIBE_H_ */

View file

@ -53,11 +53,11 @@ struct SamplingSolution {
static double ComputeWeight(double x) { static double ComputeWeight(double x) {
if (-1.5 < x && x < 1.5) { if (-1.5 < x && x < 1.5) {
if (-.5 < x && x < .5) { if (-.5 < x && x < .5) {
return.75 - SQR(x); return .75 - SQR(x);
} else if (x < 0) { } else if (x < 0) {
return.5 * SQR(x + 1.5); return .5 * SQR(x + 1.5);
} else { } else {
return.5 * SQR(x - 1.5); return .5 * SQR(x - 1.5);
} }
} else { } else {
return 0; return 0;
@ -164,12 +164,19 @@ static void GyaradosImpl(long dyw, long dxw, int dst[dyw][dxw], long syw,
tmp0[dy][sx] = QRS(M, eax); tmp0[dy][sx] = QRS(M, eax);
} }
} }
for (dy = 0; dy < dyn; ++dy) { if (sharpen) {
for (sx = 0; sx < sxn; ++sx) { for (dy = 0; dy < dyn; ++dy) {
tmp1[dy][sx] = sharpen ? Sharpen(tmp0[MIN(dyn - 1, MAX(0, dy - 1))][sx], for (sx = 0; sx < sxn; ++sx) {
tmp0[dy][sx], tmp1[dy][sx] =
tmp0[MIN(dyn - 1, MAX(0, dy + 1))][sx]) Sharpen(tmp0[MIN(dyn - 1, MAX(0, dy - 1))][sx], tmp0[dy][sx],
: tmp0[dy][sx]; tmp0[MIN(dyn - 1, MAX(0, dy + 1))][sx]);
}
}
} else {
for (dy = 0; dy < dyn; ++dy) {
for (sx = 0; sx < sxn; ++sx) {
tmp1[dy][sx] = tmp0[dy][sx];
}
} }
} }
for (dx = 0; dx < dxn; ++dx) { for (dx = 0; dx < dxn; ++dx) {
@ -180,12 +187,19 @@ static void GyaradosImpl(long dyw, long dxw, int dst[dyw][dxw], long syw,
tmp2[dy][dx] = QRS(M, eax); tmp2[dy][dx] = QRS(M, eax);
} }
} }
for (dx = 0; dx < dxn; ++dx) { if (sharpen) {
for (dy = 0; dy < dyn; ++dy) { for (dx = 0; dx < dxn; ++dx) {
dst[dy][dx] = sharpen ? Sharpen(tmp2[dy][MIN(dxn - 1, MAX(0, dx - 1))], for (dy = 0; dy < dyn; ++dy) {
tmp2[dy][dx], dst[dy][dx] =
tmp2[dy][MIN(dxn - 1, MAX(0, dx + 1))]) Sharpen(tmp2[dy][MIN(dxn - 1, MAX(0, dx - 1))], tmp2[dy][dx],
: tmp2[dy][dx]; tmp2[dy][MIN(dxn - 1, MAX(0, dx + 1))]);
}
}
} else {
for (dx = 0; dx < dxn; ++dx) {
for (dy = 0; dy < dyn; ++dy) {
dst[dy][dx] = tmp2[dy][dx];
}
} }
} }
} }

View file

@ -186,7 +186,6 @@ if [ ! -x bin/x86_64-linux-cosmo-gcc ]; then
rm -f x86_64-gcc.zip rm -f x86_64-gcc.zip
rm -f llvm.zip rm -f llvm.zip
mv bin/clang-19 bin/cosmo-clang mv bin/clang-19 bin/cosmo-clang
mv bin/clang-format bin/clang-format
fi fi
rm -f bin/*-cpp rm -f bin/*-cpp
rm -f bin/*-gcc-* rm -f bin/*-gcc-*

View file

@ -36,6 +36,7 @@ TOOL_VIZ_LIB_A_DIRECTDEPS = \
LIBC_RUNTIME \ LIBC_RUNTIME \
LIBC_STDIO \ LIBC_STDIO \
LIBC_STR \ LIBC_STR \
LIBC_THREAD \
LIBC_SYSV \ LIBC_SYSV \
LIBC_TESTLIB \ LIBC_TESTLIB \
LIBC_TINYMATH \ LIBC_TINYMATH \

View file

@ -43,6 +43,7 @@
#include "libc/str/str.h" #include "libc/str/str.h"
#include "libc/sysv/consts/sig.h" #include "libc/sysv/consts/sig.h"
#include "libc/sysv/errfuns.h" #include "libc/sysv/errfuns.h"
#include "libc/thread/thread.h"
#include "libc/time.h" #include "libc/time.h"
#include "libc/x/x.h" #include "libc/x/x.h"
#include "tool/viz/lib/graphic.h" #include "tool/viz/lib/graphic.h"
@ -69,6 +70,7 @@ struct timespec magikarp_start_;
struct YCbCr { struct YCbCr {
bool yonly; bool yonly;
int cpu_count;
int magnums[8][4]; int magnums[8][4];
int lighting[6][4]; int lighting[6][4];
unsigned char transfer[2][256]; unsigned char transfer[2][256];
@ -165,6 +167,7 @@ void YCbCrInit(struct YCbCr **ycbcr, bool yonly, int swing, double gamma,
if (!*ycbcr) if (!*ycbcr)
*ycbcr = xcalloc(1, sizeof(struct YCbCr)); *ycbcr = xcalloc(1, sizeof(struct YCbCr));
(*ycbcr)->yonly = yonly; (*ycbcr)->yonly = yonly;
(*ycbcr)->cpu_count = __get_cpu_count();
bzero((*ycbcr)->magnums, sizeof((*ycbcr)->magnums)); bzero((*ycbcr)->magnums, sizeof((*ycbcr)->magnums));
bzero((*ycbcr)->lighting, sizeof((*ycbcr)->lighting)); bzero((*ycbcr)->lighting, sizeof((*ycbcr)->lighting));
YCbCrComputeCoefficients(swing, gamma, gamut, illuminant, (*ycbcr)->magnums, YCbCrComputeCoefficients(swing, gamma, gamut, illuminant, (*ycbcr)->magnums,
@ -263,14 +266,32 @@ void YCbCrConvert(struct YCbCr *me, long yn, long xn,
const unsigned char Y[restrict yys][yxs], long cys, long cxs, const unsigned char Y[restrict yys][yxs], long cys, long cxs,
unsigned char Cb[restrict cys][cxs], unsigned char Cb[restrict cys][cxs],
unsigned char Cr[restrict cys][cxs]) { unsigned char Cr[restrict cys][cxs]) {
struct timespec ts = timespec_real(); struct timespec ts = timespec_mono();
if (!me->yonly) { if (!me->yonly) {
YCbCr2Rgb(yn, xn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr, me->magnums, YCbCr2Rgb(yn, xn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr, me->magnums,
me->lighting, me->transfer[pf10_]); me->lighting, me->transfer[pf10_]);
} else { } else {
Y2Rgb(yn, xn, RGB, yys, yxs, Y, me->magnums, me->transfer[pf10_]); Y2Rgb(yn, xn, RGB, yys, yxs, Y, me->magnums, me->transfer[pf10_]);
} }
ycbcr2rgb_latency_ = timespec_tomicros(timespec_sub(timespec_real(), ts)); ycbcr2rgb_latency_ = timespec_tomicros(timespec_sub(timespec_mono(), ts));
}
struct YCbCr2RgbScalerThreadData {
long syw, sxw, dyw, dxw, dyn, dxn, syn, sxn;
unsigned char *src;
unsigned char *dst;
int min, max;
struct SamplingSolution *cy, *cx;
bool sharpen;
};
static void *YCbCr2RgbScalerThread(void *arg) {
struct YCbCr2RgbScalerThreadData *data =
(struct YCbCr2RgbScalerThreadData *)arg;
GyaradosUint8(data->syw, data->sxw, data->src, data->dyw, data->dxw,
data->dst, data->dyn, data->dxn, data->syn, data->sxn,
data->min, data->max, data->cy, data->cx, data->sharpen);
return NULL;
} }
void YCbCr2RgbScaler(struct YCbCr *me, long dyn, long dxn, void YCbCr2RgbScaler(struct YCbCr *me, long dyn, long dxn,
@ -297,7 +318,7 @@ void YCbCr2RgbScaler(struct YCbCr *me, long dyn, long dxn,
Magkern2xY(cys, cxs, Cr, scyn, scxn), HALF(yyn), yxn, Magkern2xY(cys, cxs, Cr, scyn, scxn), HALF(yyn), yxn,
HALF(cyn), scxn, syn / 2, sxn, pry, prx); HALF(cyn), scxn, syn / 2, sxn, pry, prx);
} else { } else {
struct timespec ts = timespec_real(); struct timespec ts = timespec_mono();
magikarp_latency_ = timespec_tomicros(timespec_sub(ts, magikarp_start_)); magikarp_latency_ = timespec_tomicros(timespec_sub(ts, magikarp_start_));
yry = syn / dyn; yry = syn / dyn;
yrx = sxn / dxn; yrx = sxn / dxn;
@ -322,13 +343,83 @@ void YCbCr2RgbScaler(struct YCbCr *me, long dyn, long dxn,
sharpen(1, yys, yxs, (void *)Y, yyn, yxn); sharpen(1, yys, yxs, (void *)Y, yyn, yxn);
if (pf9_) if (pf9_)
unsharp(1, yys, yxs, (void *)Y, yyn, yxn); unsharp(1, yys, yxs, (void *)Y, yyn, yxn);
GyaradosUint8(yys, yxs, Y, yys, yxs, Y, dyn, dxn, syn, sxn, 0, 255,
me->luma.cy, me->luma.cx, true); if (me->cpu_count < 6) {
GyaradosUint8(cys, cxs, Cb, cys, cxs, Cb, dyn, dxn, scyn, scxn, 0, 255, GyaradosUint8(yys, yxs, Y, yys, yxs, Y, dyn, dxn, syn, sxn, 0, 255,
me->chroma.cy, me->chroma.cx, false); me->luma.cy, me->luma.cx, true);
GyaradosUint8(cys, cxs, Cr, cys, cxs, Cr, dyn, dxn, scyn, scxn, 0, 255, GyaradosUint8(cys, cxs, Cb, cys, cxs, Cb, dyn, dxn, scyn, scxn, 0, 255,
me->chroma.cy, me->chroma.cx, false); me->chroma.cy, me->chroma.cx, false);
gyarados_latency_ = timespec_tomicros(timespec_sub(timespec_real(), ts)); GyaradosUint8(cys, cxs, Cr, cys, cxs, Cr, dyn, dxn, scyn, scxn, 0, 255,
me->chroma.cy, me->chroma.cx, false);
} else {
pthread_t threads[3];
struct YCbCr2RgbScalerThreadData thread_data[3];
// Set up thread data for Y plane.
thread_data[0] = (struct YCbCr2RgbScalerThreadData){
.syw = yys,
.sxw = yxs,
.dyw = yys,
.dxw = yxs,
.dyn = dyn,
.dxn = dxn,
.syn = syn,
.sxn = sxn,
.src = (unsigned char *)Y,
.dst = (unsigned char *)Y,
.min = 0,
.max = 255,
.cy = me->luma.cy,
.cx = me->luma.cx,
.sharpen = true,
};
// Set up thread data for Cb plane.
thread_data[1] = (struct YCbCr2RgbScalerThreadData){
.syw = cys,
.sxw = cxs,
.dyw = cys,
.dxw = cxs,
.dyn = dyn,
.dxn = dxn,
.syn = scyn,
.sxn = scxn,
.src = (unsigned char *)Cb,
.dst = (unsigned char *)Cb,
.min = 0,
.max = 255,
.cy = me->chroma.cy,
.cx = me->chroma.cx,
.sharpen = false,
};
// Set up thread data for Cr plane.
thread_data[2] = (struct YCbCr2RgbScalerThreadData){
.syw = cys,
.sxw = cxs,
.dyw = cys,
.dxw = cxs,
.dyn = dyn,
.dxn = dxn,
.syn = scyn,
.sxn = scxn,
.src = (unsigned char *)Cr,
.dst = (unsigned char *)Cr,
.min = 0,
.max = 255,
.cy = me->chroma.cy,
.cx = me->chroma.cx,
.sharpen = false,
};
// Dispatch threads.
for (int i = 0; i < 3; i++)
pthread_create(&threads[i], NULL, YCbCr2RgbScalerThread,
&thread_data[i]);
for (int i = 3; i--;)
pthread_join(threads[i], NULL);
}
gyarados_latency_ = timespec_tomicros(timespec_sub(timespec_mono(), ts));
YCbCrConvert(me, dyn, dxn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr); YCbCrConvert(me, dyn, dxn, RGB, yys, yxs, Y, cys, cxs, Cb, Cr);
INFOF("done"); INFOF("done");
} }
@ -383,7 +474,7 @@ void *YCbCr2RgbScale(long dyn, long dxn,
CHECK_LE(cyn, cys); CHECK_LE(cyn, cys);
CHECK_LE(cxn, cxs); CHECK_LE(cxn, cxs);
INFOF("magikarp2x"); INFOF("magikarp2x");
magikarp_start_ = timespec_real(); magikarp_start_ = timespec_mono();
minyys = MAX(ceil(syn), MAX(yyn, ceil(dyn * pry))); minyys = MAX(ceil(syn), MAX(yyn, ceil(dyn * pry)));
minyxs = MAX(ceil(sxn), MAX(yxn, ceil(dxn * prx))); minyxs = MAX(ceil(sxn), MAX(yxn, ceil(dxn * prx)));
mincys = MAX(cyn, ceil(dyn * pry)); mincys = MAX(cyn, ceil(dyn * pry));

View file

@ -1130,7 +1130,7 @@ static bool ShouldDraw(void) {
static struct timespec next; static struct timespec next;
if (!isdragging) if (!isdragging)
return true; return true;
now = timespec_real(); now = timespec_mono();
if (timespec_cmp(now, next) > 0 && !HasPendingInput()) { if (timespec_cmp(now, next) > 0 && !HasPendingInput()) {
next = timespec_add(now, timespec_frommicros(1. / 24 * 1e6)); next = timespec_add(now, timespec_frommicros(1. / 24 * 1e6));
return true; return true;

View file

@ -35,14 +35,14 @@ void *worker(void *arg) {
} }
void test(int n) { void test(int n) {
struct timespec start = timespec_real(); struct timespec start = timespec_mono();
pthread_t *th = malloc(sizeof(pthread_t) * n); pthread_t *th = malloc(sizeof(pthread_t) * n);
for (int i = 0; i < n; ++i) for (int i = 0; i < n; ++i)
pthread_create(th + i, 0, worker, 0); pthread_create(th + i, 0, worker, 0);
for (int i = 0; i < n; ++i) for (int i = 0; i < n; ++i)
pthread_join(th[i], 0); pthread_join(th[i], 0);
free(th); free(th);
struct timespec end = timespec_real(); struct timespec end = timespec_mono();
printf("%2d threads * %d allocs = %ld us\n", n, ALLOCATIONS, printf("%2d threads * %d allocs = %ld us\n", n, ALLOCATIONS,
timespec_tomicros(timespec_sub(end, start))); timespec_tomicros(timespec_sub(end, start)));
} }

View file

@ -335,10 +335,11 @@ static long Index(long y, long x) {
static void PreventBufferbloat(void) { static void PreventBufferbloat(void) {
struct timespec now, rate; struct timespec now, rate;
static struct timespec last; static struct timespec last;
now = timespec_real(); now = timespec_mono();
rate = timespec_frommicros(1. / fps * 1e6); rate = timespec_frommicros(1. / fps * 1e6);
if (timespec_cmp(timespec_sub(now, last), rate) < 0) { if (timespec_cmp(timespec_sub(now, last), rate) < 0) {
timespec_sleep(CLOCK_REALTIME, timespec_sub(rate, timespec_sub(now, last))); timespec_sleep(CLOCK_MONOTONIC,
timespec_sub(rate, timespec_sub(now, last)));
} }
last = now; last = now;
} }

View file

@ -40,6 +40,7 @@
#include "libc/calls/ucontext.h" #include "libc/calls/ucontext.h"
#include "libc/ctype.h" #include "libc/ctype.h"
#include "libc/cxxabi.h" #include "libc/cxxabi.h"
#include "libc/dce.h"
#include "libc/errno.h" #include "libc/errno.h"
#include "libc/fmt/conv.h" #include "libc/fmt/conv.h"
#include "libc/fmt/itoa.h" #include "libc/fmt/itoa.h"
@ -56,7 +57,9 @@
#include "libc/nexgen32e/bench.h" #include "libc/nexgen32e/bench.h"
#include "libc/nexgen32e/x86feature.h" #include "libc/nexgen32e/x86feature.h"
#include "libc/nt/console.h" #include "libc/nt/console.h"
#include "libc/nt/enum/threadpriority.h"
#include "libc/nt/runtime.h" #include "libc/nt/runtime.h"
#include "libc/nt/thread.h"
#include "libc/runtime/runtime.h" #include "libc/runtime/runtime.h"
#include "libc/sock/sock.h" #include "libc/sock/sock.h"
#include "libc/sock/struct/pollfd.h" #include "libc/sock/struct/pollfd.h"
@ -1398,6 +1401,10 @@ static void TryToOpenFrameBuffer(void) {
int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
sigset_t wut; sigset_t wut;
ShowCrashReports(); ShowCrashReports();
#ifdef __x86_64__
if (IsWindows())
SetThreadPriority(GetCurrentThread(), kNtThreadPriorityHighest);
#endif
gamma_ = 2.4; gamma_ = 2.4;
volscale_ = 1.f; volscale_ = 1.f;
dither_ = true; dither_ = true;