Improve cosmo's conformance to libc-test

This change addresses various open source compatibility issues, so that
we pass 313/411 of the tests in https://github.com/jart/libc-test where
earlier today we were passing about 30/411 of them, due to header toil.
Please note that Glibc only passes 341/411 so 313 today is pretty good!

- Make the conformance of libc/isystem/ headers nearly perfect
- Import more of the remaining math library routines from Musl
- Fix inconsistencies with type signatures of calls like umask
- Write tests for getpriority/setpriority which work great now
- conform to `struct sockaddr *` on remaining socket functions
- Import a bunch of uninteresting stdlib functions e.g. rand48
- Introduce readdir_r, scandir, pthread_kill, sigsetjmp, etc..

Follow the instructions in our `tool/scripts/cosmocc` toolchain to run
these tests yourself. You use `make CC=cosmocc` on the test repository
This commit is contained in:
Justine Tunney 2022-10-10 17:52:41 -07:00
parent 467a332e38
commit e557058ac8
No known key found for this signature in database
GPG key ID: BE714B4575D6E328
189 changed files with 5091 additions and 884 deletions

314
libc/tinymath/jn.c Normal file
View file

@ -0,0 +1,314 @@
/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│
vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi
Musl Libc
Copyright © 2005-2014 Rich Felker, et al.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "libc/math.h"
#include "libc/tinymath/complex.internal.h"
asm(".ident\t\"\\n\\n\
Double-precision math functions (MIT License)\\n\
Copyright 2018 ARM Limited\"");
asm(".include \"libc/disclaimer.inc\"");
// clang-format off
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* jn(n, x), yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<=x, forward recursion is used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*/
static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
double jn(int n, double x)
{
uint32_t ix, lx;
int nm1, i, sign;
double a, b, temp;
EXTRACT_WORDS(ix, lx, x);
sign = ix>>31;
ix &= 0x7fffffff;
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
return x;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
if (n == 0)
return j0(x);
if (n < 0) {
nm1 = -(n+1);
x = -x;
sign ^= 1;
} else
nm1 = n-1;
if (nm1 == 0)
return j1(x);
sign &= n; /* even n: 0, odd n: signbit(x) */
x = fabs(x);
if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
b = 0.0;
else if (nm1 < x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if (ix >= 0x52d00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(nm1&3) {
case 0: temp = -cos(x)+sin(x); break;
case 1: temp = -cos(x)-sin(x); break;
case 2: temp = cos(x)-sin(x); break;
default:
case 3: temp = cos(x)+sin(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = j0(x);
b = j1(x);
for (i=0; i<nm1; ) {
i++;
temp = b;
b = b*(2.0*i/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if (ix < 0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (nm1 > 32) /* underflow */
b = 0.0;
else {
temp = x*0.5;
b = temp;
a = 1.0;
for (i=2; i<=nm1+1; i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,q0,q1,w,h,z,tmp,nf;
int k;
nf = nm1 + 1.0;
w = 2*nf/x;
h = 2/x;
z = w+h;
q0 = w;
q1 = w*z - 1.0;
k = 1;
while (q1 < 1.0e9) {
k += 1;
z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
for (t=0.0, i=k; i>=0; i--)
t = 1/(2*(i+nf)/x - t);
a = t;
b = 1.0;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = nf*log(fabs(w));
if (tmp < 7.09782712893383973096e+02) {
for (i=nm1; i>0; i--) {
temp = b;
b = b*(2.0*i)/x - a;
a = temp;
}
} else {
for (i=nm1; i>0; i--) {
temp = b;
b = b*(2.0*i)/x - a;
a = temp;
/* scale b to avoid spurious overflow */
if (b > 0x1p500) {
a /= b;
t /= b;
b = 1.0;
}
}
}
z = j0(x);
w = j1(x);
if (fabs(z) >= fabs(w))
b = t*z/b;
else
b = t*w/a;
}
}
return sign ? -b : b;
}
double yn(int n, double x)
{
uint32_t ix, lx, ib;
int nm1, sign, i;
double a, b, temp;
EXTRACT_WORDS(ix, lx, x);
sign = ix>>31;
ix &= 0x7fffffff;
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
return x;
if (sign && (ix|lx)!=0) /* x < 0 */
return 0/0.0;
if (ix == 0x7ff00000)
return 0.0;
if (n == 0)
return y0(x);
if (n < 0) {
nm1 = -(n+1);
sign = n&1;
} else {
nm1 = n-1;
sign = 0;
}
if (nm1 == 0)
return sign ? -y1(x) : y1(x);
if (ix >= 0x52d00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(nm1&3) {
case 0: temp = -sin(x)-cos(x); break;
case 1: temp = -sin(x)+cos(x); break;
case 2: temp = sin(x)+cos(x); break;
default:
case 3: temp = sin(x)-cos(x); break;
}
b = invsqrtpi*temp/sqrt(x);
} else {
a = y0(x);
b = y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(ib, b);
for (i=0; i<nm1 && ib!=0xfff00000; ){
i++;
temp = b;
b = (2.0*i/x)*b - a;
GET_HIGH_WORD(ib, b);
a = temp;
}
}
return sign ? -b : b;
}