mirror of
https://github.com/jart/cosmopolitan.git
synced 2025-05-22 21:32:31 +00:00
Make stronger crypto nearly as fast
One of the disadvantages of x25519 and ℘256 is it only provides 126 bits of security, so that seems like a weak link in the chain, if we're using ECDHE-ECDSA-AES256-GCM-SHA384. The U.S. government wants classified data to be encrypted using a curve at least as strong as ℘384, which provides 192 bits of security, but if you read the consensus of stack exchange it would give you the impression that ℘384 is three times slower. This change (as well as the previous one) makes ℘384 three times as fast by tuning its modulus and multiplication subroutines with new tests that should convincingly show: the optimized code behaves the same way as the old code. Some of the diff noise from the previous change is now removed too, so that our vendored fork can be more easily compared with upstream sources. So you can now have stronger cryptography without compromises. ℘384 modulus Justine l: 28𝑐 9𝑛𝑠 ℘384 modulus MbedTLS NIST l: 127𝑐 41𝑛𝑠 ℘384 modulus MbedTLS MPI l: 1,850𝑐 597𝑛𝑠 The benchmarks above show the improvements made by secp384r1() which is an important function since it needs to be called 13,000 times whenever someone establishes a connection to your web server. The same's true of Mul6x6Adx() which is able to multiply 384-bit numbers in 73 cycles, but only if your CPU was purchased after 2014 when Broadwell was introduced
This commit is contained in:
parent
398f0c16fb
commit
ea83cc0ad0
27 changed files with 4291 additions and 3361 deletions
|
@ -39,6 +39,7 @@
|
|||
#include "third_party/mbedtls/des.h"
|
||||
#include "third_party/mbedtls/dhm.h"
|
||||
#include "third_party/mbedtls/ecp.h"
|
||||
#include "third_party/mbedtls/ecp_internal.h"
|
||||
#include "third_party/mbedtls/entropy.h"
|
||||
#include "third_party/mbedtls/error.h"
|
||||
#include "third_party/mbedtls/gcm.h"
|
||||
|
@ -148,17 +149,17 @@ static void P256_MPI(mbedtls_mpi *N) {
|
|||
|
||||
static void P256_JUSTINE(mbedtls_mpi *N) {
|
||||
memcpy(N->p, rng, 8 * 8);
|
||||
ecp_mod_p256(N);
|
||||
secp256r1(N->p);
|
||||
}
|
||||
|
||||
static void P384_MPI(mbedtls_mpi *N) {
|
||||
memcpy(N->p, rng, 8 * 8);
|
||||
memcpy(N->p, rng, 12 * 8);
|
||||
ASSERT_EQ(0, mbedtls_mpi_mod_mpi(N, N, &grp.P));
|
||||
}
|
||||
|
||||
static void P384_JUSTINE(mbedtls_mpi *N) {
|
||||
memcpy(N->p, rng, 8 * 8);
|
||||
ecp_mod_p384(N);
|
||||
memcpy(N->p, rng, 12 * 8);
|
||||
secp384r1(N->p);
|
||||
}
|
||||
|
||||
BENCH(p256, bench) {
|
||||
|
@ -166,6 +167,7 @@ BENCH(p256, bench) {
|
|||
mbedtls_ecp_group_init(&grp);
|
||||
mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP256R1);
|
||||
mbedtls_mpi x = {1, 8, gc(calloc(8, 8))};
|
||||
rngset(x.p, 8 * 8, rand64, -1);
|
||||
EZBENCH2("P-256 modulus MbedTLS MPI lib", donothing, P256_MPI(&x));
|
||||
EZBENCH2("P-256 modulus Justine rewrite", donothing, P256_JUSTINE(&x));
|
||||
mbedtls_ecp_group_free(&grp);
|
||||
|
@ -176,10 +178,10 @@ BENCH(p384, bench) {
|
|||
#ifdef MBEDTLS_ECP_C
|
||||
mbedtls_ecp_group_init(&grp);
|
||||
mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP384R1);
|
||||
uint64_t y[12];
|
||||
mbedtls_mpi x = {1, 12, gc(calloc(12, 8))};
|
||||
EZBENCH2("P-384 modulus MbedTLS MPI lib", donothing, P384_MPI(&x));
|
||||
EZBENCH2("P-384 modulus Justine rewrite", donothing, P384_JUSTINE(&x));
|
||||
rngset(x.p, 12 * 8, rand64, -1);
|
||||
mbedtls_ecp_group_free(&grp);
|
||||
#endif
|
||||
}
|
||||
|
@ -1112,3 +1114,49 @@ BENCH(cmpint, bench) {
|
|||
EZBENCH2("cmpint 3.1", donothing, mbedtls_mpi_cmp_int(&z, 0));
|
||||
EZBENCH2("cmpint 3.2", donothing, mbedtls_mpi_cmp_int(&z, 1));
|
||||
}
|
||||
|
||||
mbedtls_mpi_uint F1(mbedtls_mpi_uint *d, const mbedtls_mpi_uint *a,
|
||||
const mbedtls_mpi_uint *b, size_t n) {
|
||||
size_t i;
|
||||
unsigned char cf;
|
||||
mbedtls_mpi_uint c, x;
|
||||
cf = c = i = 0;
|
||||
for (; i < n; ++i) SBB(d[i], a[i], b[i], c, c);
|
||||
return c;
|
||||
}
|
||||
|
||||
mbedtls_mpi_uint F2(mbedtls_mpi_uint *d, const mbedtls_mpi_uint *a,
|
||||
const mbedtls_mpi_uint *b, size_t n) {
|
||||
size_t i;
|
||||
unsigned char cf;
|
||||
mbedtls_mpi_uint c, x;
|
||||
cf = c = i = 0;
|
||||
asm volatile("xor\t%1,%1\n\t"
|
||||
".align\t16\n1:\t"
|
||||
"mov\t(%5,%3,8),%1\n\t"
|
||||
"sbb\t(%6,%3,8),%1\n\t"
|
||||
"mov\t%1,(%4,%3,8)\n\t"
|
||||
"lea\t1(%3),%3\n\t"
|
||||
"dec\t%2\n\t"
|
||||
"jnz\t1b"
|
||||
: "=@ccb"(cf), "=&r"(x), "+c"(n), "=r"(i)
|
||||
: "r"(d), "r"(a), "r"(b), "3"(0)
|
||||
: "cc", "memory");
|
||||
return cf;
|
||||
}
|
||||
|
||||
TEST(wut, wut) {
|
||||
uint64_t A[8];
|
||||
uint64_t B[8];
|
||||
uint64_t C[8];
|
||||
uint64_t D[8];
|
||||
int i;
|
||||
for (i = 0; i < 1000; ++i) {
|
||||
rngset(A, sizeof(A), rand64, -1);
|
||||
rngset(B, sizeof(B), rand64, -1);
|
||||
int x = F1(C, A, B, 8);
|
||||
int y = F2(D, A, B, 8);
|
||||
ASSERT_EQ(x, y);
|
||||
ASSERT_EQ(0, memcmp(C, D, sizeof(C)));
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue