This change fixes a bug where signal_latency_async_test would flake less
than 1/1000 of the time. What was happening was pthread_kill(sender_thr)
would return EFAULT. This was because pthread_create() was not returning
the thread object pointer until after clone() had been called. So it was
actually possible for the main thread to stall after calling clone() and
during that time the receiver would launch and receive a signal from the
sender thread, and then fail when it tried to send a pong. I thought I'd
use a barrier at first, in the test, to synchronize thread creation, but
I firmly believe that pthread_create() was to blame and now that's fixed
On Windows, mmap() now chooses addresses transactionally. It reduces the
risk of badness when interacting with the WIN32 memory manager. We don't
throw darts anymore. There is also no more retry limit, since we recover
from mystery maps more gracefully. The subroutine for combining adjacent
maps has been rewritten for clarity. The print maps subroutine is better
This change goes to great lengths to perfect the stack overflow code. On
Windows you can now longjmp() out of a crash signal handler. Guard pages
previously weren't being restored properly by the signal handler. That's
fixed, so on Windows you can now handle a stack overflow multiple times.
Great thought has been put into selecting the perfect SIGSTKSZ constants
so you can save sigaltstack() memory. You can now use kprintf() with 512
bytes of stack available. The guard pages beneath the main stack are now
recorded in the memory manager.
This change fixes getcontext() so it works right with the %rax register.
This change doubles the performance of thread spawning. That's thanks to
our new stack manager, which allows us to avoid zeroing stacks. It gives
us 15µs spawns rather than 30µs spawns on Linux. Also, pthread_exit() is
faster now, since it doesn't need to acquire the pthread GIL. On NetBSD,
that helps us avoid allocating too many semaphores. Even if that happens
we're now able to survive semaphores running out and even memory running
out, when allocating *NSYNC waiter objects. I found a lot more rare bugs
in the POSIX threads runtime that could cause things to crash, if you've
got dozens of threads all spawning and joining dozens of threads. I want
cosmo to be world class production worthy for 2025 so happy holidays all