This change fixes a bug where nsync waiter objects would leak. It'd mean
that long-running programs like runitd would run out of file descriptors
on NetBSD where waiter objects have ksem file descriptors. On other OSes
this bug is mostly harmless since the worst that can happen with a futex
is to leak a little bit of ram. The bug was caused because tib_nsync was
sneaking back in after the finalization code had cleared it. This change
refactors the thread exiting code to handle nsync teardown appropriately
and in making this change I found another issue, which is that user code
which is buggy, and tries to exit without joining joinable threads which
haven't been detached, would result in a deadlock. That doesn't sound so
bad, except the main thread is a joinable thread. So this deadlock would
be triggered in ways that put libc at fault. So we now auto-join threads
and libc will log a warning to --strace when that happens for any thread
While we have always licked glibc and musl libc on gnu/systemd sadly the
Apple Libc implementation of pthread_mutex_t is better than ours. It may
be due to how the XNU kernel and M2 microprocessor are in league when it
comes to scheduling processes and the NSYNC behavior is being penalized.
We can solve this by leaning more heavily on ulock using Drepper's algo.
It's kind of ironic that Linux's official mutexes work terribly on Linux
but almost as good as Apple Libc if used on MacOS.
It's now possible to create thousands of thousands of sparse independent
memory mappings, without any slowdown. The memory manager is better with
tracking memory protection now, particularly on Windows in a precise way
that can be restored during fork(). You now have the highest quality mem
manager possible. It's even better than some OSes like XNU, where mmap()
is implemented as an O(n) operation which means sadly things aren't much
improved over there. With this change the llamafile HTTP server endpoint
at /tokenize with a prompt of 50 tokens is now able to handle 2.6m r/sec
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
We torture test dlmalloc() in test/libc/stdio/memory_test.c. That test
was crashing on occasion on Apple M1 microprocessors when dlmalloc was
using *NSYNC locks. It was relatively easy to spot the cause, which is
this one particular compare and swap operation, which needed to change
to use sequentially-consistent ordering rather than an acquire barrier
- We now serialize the file descriptor table when spawning / executing
processes on Windows. This means you can now inherit more stuff than
just standard i/o. It's needed by bash, which duplicates the console
to file descriptor #255. We also now do a better job serializing the
environment variables, so you're less likely to encounter E2BIG when
using your bash shell. We also no longer coerce environ to uppercase
- execve() on Windows now remotely controls its parent process to make
them spawn a replacement for itself. Then it'll be able to terminate
immediately once the spawn succeeds, without having to linger around
for the lifetime as a shell process for proxying the exit code. When
process worker thread running in the parent sees the child die, it's
given a handle to the new child, to replace it in the process table.
- execve() and posix_spawn() on Windows will now provide CreateProcess
an explicit handle list. This allows us to remove handle locks which
enables better fork/spawn concurrency, with seriously correct thread
safety. Other codebases like Go use the same technique. On the other
hand fork() still favors the conventional WIN32 inheritence approach
which can be a little bit messy, but is *controlled* by guaranteeing
perfectly clean slates at both the spawning and execution boundaries
- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
there's no reason to use that and it's only supported by FreeBSD. By
using the system word size, signal mask manipulation on Windows goes
very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
Windows to take advantage of signal masking, now that it's much more
pleasant to use.
- All the overlapped i/o code on Windows has been rewritten for pretty
good signal and cancelation safety. We're now able to ensure overlap
data structures are cleaned up so long as you don't longjmp() out of
out of a signal handler that interrupted an i/o operation. Latencies
are also improved thanks to the removal of lots of "busy wait" code.
Waits should be optimal for everything except poll(), which shall be
the last and final demon we slay in the win32 i/o horror show.
- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
as RUSAGE_SELF, thanks to aggregation in the process manager thread.
This changes *NSYNC to allocate waiters on the stack so our locks don't
need to depend on dynamic memory. This make our runtiem simpler, and it
also fixes bugs with thread cancellation support.
The *NSYNC linked list API is good enough that it deserves to be part of
the C libray, so this change writes an improved version of it which uses
that offsetof() trick from the Linux Kernel. We vendor all of the *NSYNC
tests in third_party which helped confirm the needed refactoring is safe
This change also deletes more old code that didn't pan out. My goal here
is to work towards a vision where the Cosmopolitan core libraries become
less experimental and more focused on curation. This better reflects the
current level of quality we've managed to achieve.