You can now use psapi.dll and pdh.dll. Some TODOs for Windows have been
cleared out. We might have a working load average for the platform that
should help GNU Make work well.
Now that we have understandable system call tracing on Windows, this
change rewrites many of the polyfill internals for that platform, to
help things get closer to tip top shape. Support for complex forking
scenarios had been in a regressed state for quite some time. Now, it
works! Subsequent changes should be able to address the performance.
The termios::c_cc field turned out to be incorrectly defined on Linux
due to some confusion between the glibc and kernel definitions. We'll
be using the kernel definition, since it has the strongest consensus.
Fields have been have been added to struct stat for BSD compatibility
such as st_birthtim, plus the GLIBC compatibility of isystem/sys/stat
has been improved.
The ZIP filesystem has a breaking change. You now need to use /zip/ to
open() / opendir() / etc. assets within the ZIP structure of your APE
binary, instead of the previous convention of using zip: or zip! URIs.
This is needed because Python likes to use absolute paths, and having
ZIP paths encoded like URIs simply broke too many things.
Many more system calls have been updated to be able to operate on ZIP
files and file descriptors. In particular fcntl() and ioctl() since
Python would do things like ask if a ZIP file is a terminal and get
confused when the old implementation mistakenly said yes, because the
fastest way to guarantee native file descriptors is to dup(2). This
change also improves the async signal safety of zipos and ensures it
doesn't maintain any open file descriptors beyond that which the user
has opened.
This change makes a lot of progress towards adding magic numbers that
are specific to platforms other than Linux. The philosophy here is that,
if you use an operating system like FreeBSD, then you should be able to
take advantage of FreeBSD exclusive features, even if we don't polyfill
them on other platforms. For example, you can now open() a file with the
O_VERIFY flag. If your program runs on other platforms, then Cosmo will
automatically set O_VERIFY to zero. This lets you safely use it without
the need for #ifdef or ifstatements which detract from readability.
One of the blindspots of the ASAN memory hardening we use to offer Rust
like assurances has always been that memory passed to the kernel via
system calls (e.g. writev) can't be checked automatically since the
kernel wasn't built with MODE=asan. This change makes more progress
ensuring that each system call will verify the soundness of memory
before it's passed to the kernel. The code for doing these checks is
fast, particularly for buffers, where it can verify 64 bytes a cycle.
- Correct O_LOOP definition on NT
- Introduce program_executable_name
- Add ASAN guards to more system calls
- Improve termios compatibility with BSDs
- Fix bug in Windows auxiliary value encoding
- Add BSD and XNU specific errnos and open flags
- Add check to ensure build doesn't talk to internet
- Use nullness checks when calling weakly linked functions.
- Avoid typedef for reasons described in Linux Kernel style guide.
- Avoid enum in in Windows headers. Earlier in Cosmo's history all one
hundred files in libc/nt/enum/ used to be enums and it resulted in
gigabytes of DWARF data almost as large as everything else in the
codebase combined.
- Bitfields aren't our friends. They have frequent ABI breakages,
inconsistent arithmetic across compilers, and different endianness
between cpus. Compiler authors also haven't invested much roi into
making bit fields go fast so they produce poor assembly.
- Use memccpy() instead of strncpy() or snprintf() for length-bounded
copying of C strings. strncpy() is a misunderstood function and
snprintf() is awesome but memccpy() deserves more love.
- SIOCGIFCONFIG: reads and enumerate all the network interfaces
- SIOCGIFADDR: reads network address for a given interface
- SIOCGIFFLAGS: reads network flags for a given interface
- SIOCGIFNETMASK: reads network netmask for a given interface
- SIOCGIFBRDADDR: reads network broadcast address for a given interface
- SIOCGIFDSTADDR: reads peer destination address for a given
interface (not supported for Windows)
This change defines Linux ABI structs for the above interfaces and adds
polyfills to ensure they behave consistently on XNU and Windows.
- Get ASAN working on Windows.
- Deleting directories and then recreating them with the same name in a
short period of time appears to be a no-no on Windows.
- There's no reason to call FlushFileBuffers on close() for pipes, and
it's harmful since it might block indefinitely for no good reason.
For the first time ever, all tests in this codebase now pass, when
run automatically on macos, freebsd, openbsd, rhel5, rhel7, alpine
and windows via the network using the runit and runitd build tools
- Fix vfork exec path etc.
- Add XNU opendir() support
- Add OpenBSD opendir() support
- Add Linux history to syscalls.sh
- Use copy_file_range on FreeBSD 13+
- Fix system calls with 7+ arguments
- Fix Windows with greater than 16 FDs
- Fix RUNIT.COM and RUNITD.COM flakiness
- Fix OpenBSD munmap() when files are mapped
- Fix long double so it's actually long on Windows
- Fix OpenBSD truncate() and ftruncate() thunk typo
- Let Windows fcntl() be used on socket files descriptors
- Fix Windows fstat() which had an accidental printf statement
- Fix RHEL5 CLOCK_MONOTONIC by not aliasing to CLOCK_MONOTONIC_RAW
This is wonderful. I never could have dreamed it would be possible
to get it working so well on so many platforms with tiny binaries.
Fixes#31Fixes#25Fixes#14
It turned out that the linker was doing the wrong with the amalgamation
library concerning weak stubs. A regression test has been added and new
binaries have been uploaded to https://justine.lol/cosmopolitan/
Ideally this should be fixed by building a tool that turns multiple .a
files into a single .a file with deduplication. As a workaround for now
the cosmopolitan.a build is restructured to not include LIBC_STUBS which
meant technical debt needed to be paid off where non-stub interfaces
were moved to LIBC_INTRIN and LIBC_NEXGEN32E.
Thank @PerfectProductions in #31 for the report!
This change pays off technical debt with the function -> DLL mappings in
libc/nt/master.sh, which was originally defined based on binary analysis
on Windows 10. It's now been updated so the kernel32/kernelbase/advapi32
imports should be exactly as they are written, on the MSDN documentation
and that wouldn't have been easy without Geoff Chappell's work thank him
https://www.geoffchappell.com/studies/windows/win32/index.htm