Now that our socket system call polyfills are good enough to support
Musl's DNS library we should be using that rather than the barebones
domain name system implementation we rolled on our own. There's many
benefits to making this change. So many, that I myself wouldn't feel
qualified to enumerate them all. The Musl DNS code had to be changed
in order to support Windows of course, which looks very solid so far
- 10.5% reduction of o//depend dependency graph
- 8.8% reduction in latency of make command
- Fix issue with temporary file cleanup
There's a new -w option in compile.com that turns off the recent
Landlock output path workaround for "good commands" which do not
unlink() the output file like GNU tooling does.
Our new GNU Make unveil sandboxing appears to have zero overhead
in the grand scheme of things. Full builds are pretty fast since
the only thing that's actually slowed us down is probably libcxx
make -j16 MODE=rel
RL: took 85,732,063µs wall time
RL: ballooned to 323,612kb in size
RL: needed 828,560,521µs cpu (11% kernel)
RL: caused 39,080,670 page faults (99% memcpy)
RL: 350,073 context switches (72% consensual)
RL: performed 0 reads and 11,494,960 write i/o operations
pledge() and unveil() no longer consider ENOSYS to be an error.
These functions have also been added to Python's cosmo module.
This change also removes some WIN32 APIs and System Five magnums
which we're not using and it's doubtful anyone else would be too
- Better UBSAN error messages
- POSIX Advisory Locks polyfills
- Move redbean manual to /.help.txt
- System call memory safety in ASAN mode
- Character classification now does UNICODE