Recent optimizations to fork() introduced a regression, that could cause
the subprocess to fail unexpectedly, when TlsAlloc() returns a different
index. This is because we were burning the indexes into the displacement
of x86 opcodes. So when fork() happened and the executable memory copied
it would use the old index. Right now the way this is being solved is to
not copy the executable on fork() and then re-apply code changes. If you
need to be able to preserve self-modified code on fork, reach out and we
can implement a better solution for you. This gets us unblocked quickly.
This change adds tests for the new memory manager code particularly with
its windows support. Function call tracing now works reliably on Silicon
since our function hooker was missing new Apple self-modifying code APIs
Many tests that were disabled a long time ago on aarch64 are reactivated
by this change, now that arm support is on equal terms with x86. There's
been a lot of places where ftrace could cause deadlocks, which have been
hunted down across all platforms thanks to new tests. A bug in Windows's
kill() function has been identified.
This change makes fork() go nearly as fast as sys_fork() on UNIX. As for
Windows this change shaves about 4-5ms off fork() + wait() latency. This
is accomplished by using WriteProcessMemory() from the parent process to
setup the address space of a suspended process; it is better than a pipe
The WIN32 CreateProcess() function does not require an .exe or .com
suffix in order to spawn an executable. Now that we have Cosmo bash
we're no longer so dependent on the cmd.exe prompt.
Somehow or another, I previously had missed `BUILD.mk` files.
In the process I found a few straggler cases where the modeline was
different from the file, including one very involved manual fix where a
file had been treated like it was ts=2 and ts=8 on separate occasions.
The commit history in the PR shows the gory details; the BUILD.mk was
automated, everything else was mostly manual.