This change implements a new approach to function call logging, that's
based on the GCC flag: -fpatchable-function-entry. Read the commentary
in build/config.mk to learn how it works.
This change progresses our AARCH64 support:
- The AARCH64 build and tests are now passing
- Add 128-bit floating-point support to printf()
- Fix clone() so it initializes cosmo's x28 TLS register
- Fix TLS memory layout issue with aarch64 _Alignas vars
- Revamp microbenchmarking tools so they work on aarch64
- Make some subtle improvements to aarch64 crash reporting
- Make kisdangerous() memory checks more accurate on aarch64
- Remove sys_open() since it's not available on Linux AARCH64
This change makes general improvements to Cosmo and Redbean:
- Introduce GetHostIsa() function in Redbean
- You can now feature check using pledge(0, 0)
- You can now feature check using unveil("",0)
- Refactor some more x86-specific asm comments
- Refactor and write docs for some libm functions
- Make the mmap() API behave more similar to Linux
- Fix WIFSIGNALED() which wrongly returned true for zero
- Rename some obscure cosmo keywords from noFOO to dontFOO
There's a new program named ape/ape-m1.c which will be used to build an
embeddable binary that can load ape and elf executables. The support is
mostly working so far, but still chasing down ABI issues.
- Perform some housekeeping on scalar math function code
- Import ARM's Optimized Routines for SIMD string processing
- Upgrade to latest Chromium zlib and enable more SIMD optimizations
- Improve compatibility with Blink virtual machine
- Add non-POSIX APIs for joining threads and signal masks
- Never ever use anything except 32-bit integers for atomics
- Add some `#undef` statements to workaround `ctags` problems
- Clean up sigaction() code
- Add a port scanner example
- Introduce a ParseCidr() API
- Clean up our futex abstraction code
- Fix a harmless integer overflow in ParseIp()
- Use kernel semaphores on NetBSD to make threads much faster
- Exhaustively document cancellation points
- Rename SIGCANCEL to SIGTHR just like BSDs
- Further improve POSIX thread cancellations
- Ensure asynchronous cancellations work correctly
- Elevate the quality of getrandom() and getentropy()
- Make futexes cancel correctly on OpenBSD 6.x and 7.x
- Add reboot.com and shutdown.com to examples directory
- Remove underscore prefix from awesome timespec_*() APIs
- Create assertions that help verify our cancellation points
- Remove bad timespec APIs (cmp generalizes eq/ne/gt/gte/lt/lte)
This change makes some miracle modifications to the System Five system
call support, which lets us have safe, correct, and atomic handling of
thread cancellations. It all turned out to be cheaper than anticipated
because it wasn't necessary to modify the system call veneers. We were
able to encode the cancellability of each system call into the magnums
found in libc/sysv/syscalls.sh. Since cancellations are so waq, we are
also supporting a lovely Musl Libc mask feature for raising ECANCELED.
- ASAN memory morgue is now lockless
- Make C11 atomics header more portable
- Rewrote pthread keys support to be lockless
- Simplify Python's unicode table unpacking code
- Make crash report write(2) closer to being atomic
- Make it possible to strace/ftrace a single thread
- ASAN now checks nul-terminated strings fast and properly
- Windows fork() now restores TLS memory of calling thread
- Invent iso8601us() for faster timestamps
- Improve --strace descriptions of sigset_t
- Rebuild the Landlock Make bootstrap binary
- Introduce MODE=sysv for non-Windows builds
- Permit OFD fcntl() locks under pledge(flock)
- redbean can now protect your kernel from ddos
- Have vfork() fallback to sys_fork() not fork()
- Change kmalloc() to not die when out of memory
- Improve documentation for some termios functions
- Rewrite putenv() and friends to conform to POSIX
- Fix linenoise + strace verbosity issue on Windows
- Fix regressions in our ability to show backtraces
- Change redbean SetHeader() to no-op if value is nil
- Improve fcntl() so SQLite locks work in non-WAL mode
- Remove some unnecessary work during fork() on Windows
- Create redbean-based SSL reverse proxy for IPv4 TurfWar
- Fix ape/apeinstall.sh warning when using non-bash shells
- Add ProgramTrustedIp(), and IsTrustedIp() APIs to redbean
- Support $PWD, $UID, $GID, and $EUID in command interpreter
- Introduce experimental JTqFpD APE prefix for non-Windows builds
- Invent blackhole daemon for firewalling IP addresses via UNIX named socket
- Add ProgramTokenBucket(), AcquireToken(), and CountTokens() APIs to redbean
If threads are being used, then fork() will now acquire and release and
runtime locks so that fork() may be safely used from threads. This also
makes vfork() thread safe, because pthread mutexes will do nothing when
the process is a child of vfork(). More torture tests have been written
to confirm this all works like a charm. Additionally:
- Invent hexpcpy() api
- Rename nsync_malloc_() to kmalloc()
- Complete posix named semaphore implementation
- Make pthread_create() asynchronous signal safe
- Add rm, rmdir, and touch to command interpreter builtins
- Invent sigisprecious() and modify sigset functions to use it
- Add unit tests for posix_spawn() attributes and fix its bugs
One unresolved problem is the reclaiming of *NSYNC waiter memory in the
forked child processes, within apps which have threads waiting on locks
- SQLite file locking now works on Windows
- SQLite will now use fdatasync() on non-Apple platforms
- Fix Ctrl-C handler on Windows to not crash with TLS
- Signals now work in multithreaded apps on Windows
- fcntl() will now accurately report EINVAL errors
- fcntl() now has excellent --strace logging
- Token bucket replenish now go 100x faster
- *NSYNC cancellations now work on Windows
- Support closefrom() on NetBSD
You can now do things like implement mutexes using futexes in your
redbean lua code. This provides the fastest possible inter-process
communication for your production systems when SQLite alone as ipc
or things like pipes aren't sufficient.
It can now handle 240k SQLite write QPS at 3ms 99 percentile latency.
We're still working out the kinks since it's brand new. But we've got
this running in production already!
This change improves copy_file_range(), sendfile(), splice(), openpty(),
closefrom(), close_range(), fadvise() and posix_fadvise() in addition to
writing tests that confirm things like errno and seeking behavior across
platforms. We now less aggressively polyfill behavior with some of these
functions when the platform support isn't available. Please see:
https://justine.lol/cosmopolitan/functions.html
Since we're now on Windows 8, we can have clone() work as advertised on
Windows, where it sends a futex wake to the child tid. It's also likely
we no longer need to work around thread flakes on OpenBSD, in _wait0().
Doing this makes binaries tinier, since we don't need to have all the
extra code for supporting a 32-bit address space. It also benefits us
because we're able to use WIN32 futexes, which makes locking simpler.
b69f3d2488 is what officially ended our
Windows 7 support. This change is merely a formalization. You can use
old versions of Cosmo now and forevermore if you need Windows 7 since
our repository is hermetic and vendors all its dependencies.
Won't fix#617
- Fix preadv() and pwritev() for old distros
- Introduce _npassert() and _unassert() macros
- Prove that file locks work properly on Windows
- Support fcntl(F_DUPFD_CLOEXEC) on more systems
640 bytes for old kDos2Errno table
182 bytes for new kDos2Errno under hello2.com (MODE=fastbuild)
122 bytes for new kDos2Errno under hello2.com (MODE=tiny)
This makes breaking changes to add underscores to many non-standard
function names provided by the c library. MODE=tiny is now tinier and
we now use smaller locks that are better for tiny apps in this mode.
Some headers have been renamed to be in the same folder as the build
package, so it'll be easier to know which build dependency is needed.
Certain old misguided interfaces have been removed. Intel intrinsics
headers are now listed in libc/isystem (but not in the amalgamation)
to help further improve open source compatibility. Header complexity
has also been reduced. Lastly, more shell scripts are now available.
The organization of the source files is now much more rational.
Old experiments that didn't work out are now deleted. Naming of
things like files is now more intuitive.
pthread_mutex_lock() now uses a better algorithm which goes much faster
in multithreaded environments that have lock contention. This comes at
the cost of adding some fixed-cost overhead to mutex invocations. That
doesn't matter for Cosmopolitan because our core libraries all encode
locking operations as NOP instructions when in single-threaded mode.
Overhead only applies starting the moment you first call clone().