- Exhaustively document cancellation points
- Rename SIGCANCEL to SIGTHR just like BSDs
- Further improve POSIX thread cancellations
- Ensure asynchronous cancellations work correctly
- Elevate the quality of getrandom() and getentropy()
- Make futexes cancel correctly on OpenBSD 6.x and 7.x
- Add reboot.com and shutdown.com to examples directory
- Remove underscore prefix from awesome timespec_*() APIs
- Create assertions that help verify our cancellation points
- Remove bad timespec APIs (cmp generalizes eq/ne/gt/gte/lt/lte)
This change makes some miracle modifications to the System Five system
call support, which lets us have safe, correct, and atomic handling of
thread cancellations. It all turned out to be cheaper than anticipated
because it wasn't necessary to modify the system call veneers. We were
able to encode the cancellability of each system call into the magnums
found in libc/sysv/syscalls.sh. Since cancellations are so waq, we are
also supporting a lovely Musl Libc mask feature for raising ECANCELED.
This change also found a few POSIX compliance bugs with errnos. Another
bug was discovered where, on Windows, pread() and pwrite() could modify
the file position in cases where ReadFile() returned an error e.g. when
seeking past the end of file. We also have more tests!
- Fix preadv() and pwritev() for old distros
- Introduce _npassert() and _unassert() macros
- Prove that file locks work properly on Windows
- Support fcntl(F_DUPFD_CLOEXEC) on more systems
This makes breaking changes to add underscores to many non-standard
function names provided by the c library. MODE=tiny is now tinier and
we now use smaller locks that are better for tiny apps in this mode.
Some headers have been renamed to be in the same folder as the build
package, so it'll be easier to know which build dependency is needed.
Certain old misguided interfaces have been removed. Intel intrinsics
headers are now listed in libc/isystem (but not in the amalgamation)
to help further improve open source compatibility. Header complexity
has also been reduced. Lastly, more shell scripts are now available.
- Fix a regression with the previous change that broke redbean
- Add chroot(), resource limit, seccomp, and other stuff to redbean
- Write lots and lots of documentation
- Iron out more system call issues
- Update a couple unicode data files
- Disable strace during logger calls
- SQLite now uses pread() / pwrite()
- pread() past EOF on NT now returns 0
- Make the NT mmap() and fork() code elegant
- Give NT a big performance boost with memory
- Add many more mmap() tests to prove it works
Your redbean can now interoperate with clients that require TLS crypto.
This is accomplished using a protocol polyglot that lets us distinguish
between HTTP and HTTPS regardless of the port number. Certificates will
be generated automatically, if none are supplied by the user. Footprint
increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb
- Add lseek() polyfills for ZIP executable
- Automatically polyfill /tmp/FOO paths on NT
- Fix readdir() / ftw() / nftw() bugs on Windows
- Introduce -B flag for slower SSL that's stronger
- Remove mbedtls features Cosmopolitan doesn't need
- Have base64 decoder support the uri-safe alternative
- Remove Truncated HMAC because it's forbidden by the IETF
- Add all the mbedtls test suites and make them go 3x faster
- Support opendir() / readdir() / closedir() on ZIP executable
- Use Everest for ECDHE-ECDSA because it's so good it's so good
- Add tinier implementation of sha1 since it's not worth the rom
- Add chi-square monte-carlo mean correlation tests for getrandom()
- Source entropy on Windows from the proper interface everyone uses
We're continuing to outperform NGINX and other servers on raw message
throughput. Using SSL means that instead of 1,000,000 qps you can get
around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL
handshakes, since redbean can do 2,627 per second and NGINX does 4.3k
Right now, the SSL UX story works best if you give your redbean a key
signing key since that can be easily generated by openssl using a one
liner then redbean will do all the things that are impossibly hard to
do like signing ecdsa and rsa certificates that'll work in chrome. We
should integrate the let's encrypt acme protocol in the future.
Live Demo: https://redbean.justine.lol/
Root Cert: https://redbean.justine.lol/redbean1.crt
For the first time ever, all tests in this codebase now pass, when
run automatically on macos, freebsd, openbsd, rhel5, rhel7, alpine
and windows via the network using the runit and runitd build tools
- Fix vfork exec path etc.
- Add XNU opendir() support
- Add OpenBSD opendir() support
- Add Linux history to syscalls.sh
- Use copy_file_range on FreeBSD 13+
- Fix system calls with 7+ arguments
- Fix Windows with greater than 16 FDs
- Fix RUNIT.COM and RUNITD.COM flakiness
- Fix OpenBSD munmap() when files are mapped
- Fix long double so it's actually long on Windows
- Fix OpenBSD truncate() and ftruncate() thunk typo
- Let Windows fcntl() be used on socket files descriptors
- Fix Windows fstat() which had an accidental printf statement
- Fix RHEL5 CLOCK_MONOTONIC by not aliasing to CLOCK_MONOTONIC_RAW
This is wonderful. I never could have dreamed it would be possible
to get it working so well on so many platforms with tiny binaries.
Fixes#31Fixes#25Fixes#14
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.
https://justine.storage.googleapis.com/emulator625.mp4