It turns out sched_getcpu() didn't work on many platforms. So the system
call now has tests and is well documented. We now employ new workarounds
on platforms where it isn't supported in our malloc() implementation. It
was previously the case that malloc() was only scalable on Linux/Windows
for x86-64. Now the other platforms are scalable too.
This is a breaking change. It defines the new environment variable named
_COSMO_FDS_V2 which is used for inheriting non-stdio file descriptors on
execve() or posix_spawn(). No effort has been spent thus far integrating
with the older variable. If a new binary launches the older ones or vice
versa they'll only be able to pass stdin / stdout / stderr to each other
therefore it's important that you upgrade all your cosmo binaries if you
depend on this functionality. You'll be glad you did because inheritance
of file descriptors is more aligned with the POSIX standard than before.
This change ensures that if a file descriptor for an open disk file gets
shared by multiple processes within a process tree, then lseek() changes
will be visible across processes, and read() / write() are synchronized.
Note this only applies to Windows, because UNIX kernels already do this.
We now have implement all of Musl's localization code, the same way that
Musl implements localization. You may need setlocale(LC_ALL, "C.UTF-8"),
just in case anything stops working as expected.
The cosmocc.zip toolchain will now include four builds of the libcosmo.a
runtime libraries. You can pass the -mdbg flag if you want to debug your
cosmopolitan runtime. You can pass the -moptlinux flag if you don't want
windows code lurking in your binary. See tool/cosmocc/README.md for more
details on how these flags may be used and their important implications.
Cosmopolitan now supports mremap(), which is only supported on Linux and
NetBSD. First, it allows memory mappings to be relocated without copying
them; this can dramatically speed up data structures like std::vector if
the array size grows larger than 256kb. The mremap() system call is also
10x faster than munmap() when shrinking large memory mappings.
There's now two functions, getpagesize() and getgransize() which help to
write portable code that uses mmap(MAP_FIXED). Alternative sysconf() may
be called with our new _SC_GRANSIZE. The madvise() system call now has a
better wrapper with improved documentation.
It's now possible to create thousands of thousands of sparse independent
memory mappings, without any slowdown. The memory manager is better with
tracking memory protection now, particularly on Windows in a precise way
that can be restored during fork(). You now have the highest quality mem
manager possible. It's even better than some OSes like XNU, where mmap()
is implemented as an O(n) operation which means sadly things aren't much
improved over there. With this change the llamafile HTTP server endpoint
at /tokenize with a prompt of 50 tokens is now able to handle 2.6m r/sec
This change reduces o/tiny/examples/life from 44kb to 24kb in size since
it avoids linking mmap() when unnecessary. This is important, to helping
cosmo not completely lose touch with its roots.
- Ensure SIGTHR isn't blocked in newly created threads
- Use TIB rather than thread_local for thread atexits
- Make POSIX thread keys atomic within thread
- Don't bother logging prctl() to --strace
- Log thread destructor names to --strace
This fixes a regression in mmap(MAP_FIXED) on Windows caused by a recent
revision. This change also fixes ZipOS so it no longer needs a MAP_FIXED
mapping to open files from the PKZIP store. The memory mapping mutex was
implemented incorrectly earlier which meant that ftrace and strace could
cause cause crashes. This lock and other recursive mutexes are rewritten
so that it should be provable that recursive mutexes in cosmopolitan are
asynchronous signal safe.
We now have a C++ red-black tree implementation that implements standard
template library compatible APIs while compiling 10x faster than libcxx.
It's not as beautiful as the red-black tree implementation in Plinko but
this will get the job done and the test proves it upholds all invariants
This change also restores CheckForMemoryLeaks() support and fixes a real
actual bug I discovered with Doug Lea's dlmalloc_inspect_all() function.
It hasn't been helpful enough to be justify the maintenance burden. What
actually does help is mprotect(), kprintf(), --ftrace and --strace which
can always be counted upon to work correctly. We aren't losing much with
this change. Support for ASAN on AARCH64 was never implemented. Applying
ASAN to the core libc runtimes was disabled many months ago. If there is
some way to have an ASAN runtime for user programs that is less invasive
we can potentially consider reintroducing support. But now is premature.
Actually Portable Executable now supports Android. Cosmo's old mmap code
required a 47 bit address space. The new implementation is very agnostic
and supports both smaller address spaces (e.g. embedded) and even modern
56-bit PML5T paging for x86 which finally came true on Zen4 Threadripper
Cosmopolitan no longer requires UNIX systems to observe the Windows 64kb
granularity; i.e. sysconf(_SC_PAGE_SIZE) will now report the host native
page size. This fixes a longstanding POSIX conformance issue, concerning
file mappings that overlap the end of file. Other aspects of conformance
have been improved too, such as the subtleties of address assignment and
and the various subtleties surrounding MAP_FIXED and MAP_FIXED_NOREPLACE
On Windows, mappings larger than 100 megabytes won't be broken down into
thousands of independent 64kb mappings. Support for MAP_STACK is removed
by this change; please use NewCosmoStack() instead.
Stack overflow avoidance is now being implemented using the POSIX thread
APIs. Please use GetStackBottom() and GetStackAddr(), instead of the old
error-prone GetStackAddr() and HaveStackMemory() APIs which are removed.
🚨 clang-format changes output per version!
This is with version 19.0.0. The modifications seem to be fixing the old
version’s errors - mainly involving omitted whitespace around binary ops
and inserted whitespace between goto labels and colons (if followed by a
curly brace.)
Also fixes a few mistakes made by e.g. someone (ahem) forgetting to pass
his ctl/string.h modifications through it.
We should add this to .git-blame-ignore-revs once we have its final hash
on master.
If pthread_create() is linked into the binary, then the cosmo runtime
will create an independent dlmalloc arena for each core. Whenever the
malloc() function is used it will index `g_heaps[sched_getcpu() / 2]`
to find the arena with the greatest hyperthread / numa locality. This
may be configured via an environment variable. For example if you say
`export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways.
Your process may be configured to have anywhere between 1 - 128 heaps
We need this revision because it makes multithreaded C++ applications
faster. For example, an HTTP server I'm working on that makes extreme
use of the STL went from 16k to 2000k requests per second, after this
change was made. To understand why, try out the malloc_test benchmark
which calls malloc() + realloc() in a loop across many threads, which
sees a a 250x improvement in process clock time and 200x on wall time
The tradeoff is this adds ~25ns of latency to individual malloc calls
compared to MODE=tiny, once the cosmo runtime has transitioned into a
fully multi-threaded state. If you don't need malloc() to be scalable
then cosmo provides many options for you. For starters the heap count
variable above can be set to put the process back in single heap mode
plus you can go even faster still, if you include tinymalloc.inc like
many of the programs in tool/build/.. are already doing since that'll
shave tens of kb off your binary footprint too. Theres also MODE=tiny
which is configured to use just 1 plain old dlmalloc arena by default
Another tradeoff is we need more memory now (except in MODE=tiny), to
track the provenance of memory allocation. This is so allocations can
be freely shared across threads, and because OSes can reschedule code
to different CPUs at any time.
This change fixes a bug where exiting a crash signal handler on Windows
after adding the signal to uc_sigmask, but not correcting the CPU state
would cause the signal handler to loop infinitely, causing process hang
Another issue is that very tiny programs, that don't link posix signals
would not have their SIGILL / SIGSEGV / etc. status reported to Cosmo's
bash shell when terminating on crash. That's fixed by a tiny handler in
WinMain() that knows how to map WIN32 crash codes to the POSIX flavors.
Microsoft caused some very gentle breakages for Cosmopolitan. They
removed the version information from the PEB which caused uname to
report WINDOWS 0.0.0. We should have called GetVersionExW but that
doesn't really exist anymore either. Windows policy is now to give
whatever version we used in ape/ape.S. Windows8 has been EOL since
2023-01-10 so lets avoid our modern executables being relegated to
legacy infrastructure. Requiring Windows 10+ going forward lets us
remove runtime compatibility bloat from the codebase. Further note
Cosmopolitan maintains a Windows Vista branch on GitHub, so anyone
preferring the older versions, can still have a future with Cosmo.
Another neat thing this fixes is UTF-8 support in the console. The
changes Microsoft made broke the if statement that enabled UTF8 in
terminals. This explains why bug reports had broken arrows. In the
future this should be less of an issue, since the PEB code is gone
which means we more strictly conform to only Microsoft's WIN32 API
This change solves the XNU crash loop mystery. Apple's documentation
claims to support this feature, but they only define the constant in
their header files. The kernel acknowledges thi SA_RESETHAND bit, by
clearing it from the sa_flags state, returns zero, and does nothing.
We're now able to pretty print a C++ backtrace upon crashing in pretty
much any runtime execution scenario. The default pledge sandbox policy
on Linux is now to return EPERM. If you call pledge and have debugging
functions linked (e.g. GetSymbolTable) then the symbol table shall get
loaded before any security policy is put in place. This change updates
build/bootstrap/fixupobj too and fixes some other sneaky build errors.
Cosmopolitan now supports 104 time zones. They're embedded inside any
binary that links the localtime() function. Doing so adds about 100kb
to the binary size. This change also gets time zones working properly
on Windows for the first time. It's not needed to have /etc/localtime
exist on Windows, since we can get this information from WIN32. We're
also now updated to the latest version of Paul Eggert's TZ library.