Commit bc6c183 introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)
I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.
My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.
It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.
fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
Now that these functions are behind _COSMO_SOURCE there's no reason for
having the ugly underscore anymore. To use these functions, you need to
pass -mcosmo to cosmocc.
* Fix reading the same symbol twice when using `{f,}scanf()`
PR #924 appears to use `unget()` subtly incorrectly when parsing
floating point numbers. The rest of the code only uses `unget()`
immediately followed by `goto Done;` to return back the symbol that
can't possibly belong to the directive we're processing.
With floating-point, however, the ungot characters could very well
be valid for the *next* directive, so we will essentially read them
twice. It can't be seen in `sscanf()` tests because `unget()` is a
no-op there, but the test I added for `fscanf()` fails like this:
...
EXPECT_EQ(0xDEAD, i1)
need 57005 (or 0xdead) =
got 908973 (or 0x000ddead)
...
EXPECT_EQ(0xBEEF, i2)
need 48879 (or 0xbeef) =
got 769775 (or 0x000bbeef)
This means we read 0xDDEAD instead of 0xDEAD and 0xBBEEF instead of
0xBEEF. I checked that both musl and glibc read 0xDEAD/0xBEEF, as
expected.
Fix the failing test by removing the unneeded `unget()` calls.
* Don't read invalid floating-point numbers in `*scanf()`
Currently, we just ignore any errors from `strtod()`. They can
happen either because no valid float can be parsed at all, or
because the state machine recognizes only a prefix of a valid
floating-point number.
Fix this by making sure `strtod()` parses everything we recognized,
provided it's non-empty. This requires to pop the last character
off the FP buffer, which is supposed to be parsed by the next
`*scanf()` directive.
* Make `%c` parsing in `*scanf()` respect the C standard
Currently, `%c`-style directives always succeed even if there
are actually fewer characters in the input than requested.
Before the fix, the added test fails like this:
...
EXPECT_EQ(2, sscanf("ab", "%c %c %c", &c2, &c3, &c4))
need 2 (or 0x02 or '\2' or ENOENT) =
got 3 (or 0x03 or '\3' or ESRCH)
...
EXPECT_EQ(0, sscanf("abcd", "%5c", s2))
need 0 (or 0x0 or '\0') =
got 1 (or 0x01 or '\1' or EPERM)
musl and glibc pass this test.
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
- Introduce portable sched_getcpu() api
- Support GCC's __target_clones__ feature
- Make fma() go faster on x86 in default mode
- Remove some asan checks from core libraries
- WinMain() now ensures $HOME and $USER are defined
This will help C++ code that uses exceptions to be tinier. For example,
this change shaves away 1000 lines of assembly code from LLVM's libcxx,
which is 0.7% of all assembly instructions in the entire library.
Renaming gc() to _gc() was a mistake since the better thing to do is put
it behind the _COSMO_SOURCE macro. We need this change because I haven't
wanted to use my amazing garbage collector ever since we renamed it. You
now need to define _COSMO_SOURCE yourself when using amalgamation header
and cosmocc users need to pass the -mcosmo flag to get the gc() function
Some other issues relating to cancelation have been fixed along the way.
We're also now putting cosmocc in a folder named `.cosmocc` so it can be
more safely excluded by grep --exclude-dir=.cosmocc --exclude-dir=o etc.
Now that our socket system call polyfills are good enough to support
Musl's DNS library we should be using that rather than the barebones
domain name system implementation we rolled on our own. There's many
benefits to making this change. So many, that I myself wouldn't feel
qualified to enumerate them all. The Musl DNS code had to be changed
in order to support Windows of course, which looks very solid so far
Somehow or another, I previously had missed `BUILD.mk` files.
In the process I found a few straggler cases where the modeline was
different from the file, including one very involved manual fix where a
file had been treated like it was ts=2 and ts=8 on separate occasions.
The commit history in the PR shows the gory details; the BUILD.mk was
automated, everything else was mostly manual.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
- Use good ELF technique in cosmo_dlopen()
- Make strerror() conform more to other libc impls
- Introduce __clear_cache() and use it in cosmo_dlopen()
- Remove libc/fmt/fmt.h header (trying to kill off LIBC_FMT)
We now have an `#include <cxxabi.h>` header which defines all the APIs
Cosmopolitan's implemented so far. The `cosmocc` README.md file is now
greatly expanded with documentation.
Our makefile generator now accepts badly formatted include lines. It's
now more hermetic with better error checking in the cosmo repo, and it
can be configured to not be hermetic at all.
wait4() is now solid enough to run `make -j100` on Windows. You can now
use MSG_DONTWAIT on Windows. There was a handle leak in accept() that's
been fixed. Our WIN32 overlapped i/o code has been simplified. Priority
class now inherits into subprocesses, so the verynice command will work
and the signal mask will now be inherited by execve() and posix_spawn()
This change addresses a bug that was reported in #923 where bash on
Windows behaved strangely. It turned out that our weak linking of
malloc() caused bash's configure script to favor its own getcwd()
function, which is implemented in the most astonishing way, using
opendir() and readdir() to recursively construct the current path.
This change moves getcwd() into LIBC_STDIO so it can strongly link
malloc(). A new __getcwd() function is now introduced, so all the
low-level runtime services can still use the actual system call. It
provides the Linux Kernel API convention across platforms, and is
overall a higher-quality implementation than what we had before.
In the future, we should probably take a closer look into why bash's
getcwd() polyfill wasn't working as intended on Windows, since there
might be a potential opportunity there to improve our readdir() too.
- We now serialize the file descriptor table when spawning / executing
processes on Windows. This means you can now inherit more stuff than
just standard i/o. It's needed by bash, which duplicates the console
to file descriptor #255. We also now do a better job serializing the
environment variables, so you're less likely to encounter E2BIG when
using your bash shell. We also no longer coerce environ to uppercase
- execve() on Windows now remotely controls its parent process to make
them spawn a replacement for itself. Then it'll be able to terminate
immediately once the spawn succeeds, without having to linger around
for the lifetime as a shell process for proxying the exit code. When
process worker thread running in the parent sees the child die, it's
given a handle to the new child, to replace it in the process table.
- execve() and posix_spawn() on Windows will now provide CreateProcess
an explicit handle list. This allows us to remove handle locks which
enables better fork/spawn concurrency, with seriously correct thread
safety. Other codebases like Go use the same technique. On the other
hand fork() still favors the conventional WIN32 inheritence approach
which can be a little bit messy, but is *controlled* by guaranteeing
perfectly clean slates at both the spawning and execution boundaries
- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
there's no reason to use that and it's only supported by FreeBSD. By
using the system word size, signal mask manipulation on Windows goes
very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
Windows to take advantage of signal masking, now that it's much more
pleasant to use.
- All the overlapped i/o code on Windows has been rewritten for pretty
good signal and cancelation safety. We're now able to ensure overlap
data structures are cleaned up so long as you don't longjmp() out of
out of a signal handler that interrupted an i/o operation. Latencies
are also improved thanks to the removal of lots of "busy wait" code.
Waits should be optimal for everything except poll(), which shall be
the last and final demon we slay in the win32 i/o horror show.
- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
as RUSAGE_SELF, thanks to aggregation in the process manager thread.
The `cat` command now works properly, when run by itself on the bash
command prompt. It's working beautifully so far, and is only missing
a few keystrokes for clearing words and lines. Definitely works more
well than the one that ships with WIN32 :-)
This reverts commit b01282e23e. Some tests
are broken. It's not clear how it'll impact metal yet. Let's revisit the
memory optimization benefits of this change again sometime soon.
This reduces the virtual memory usage of Emacs for me by 30%. We now
have a simpler implementation that uses read(), rather mmap()ing the
whole executable.
- This change fixes a bug that allowed unbuffered printf() output (to
streams like stderr) to be truncated. This regression was introduced
some time between now and the last release.
- POSIX specifies all functions as thread safe by default. This change
works towards cleaning up our use of the @threadsafe / @threadunsafe
documentation annotations to reflect that. The goal is (1) to use
@threadunsafe to document functions which POSIX say needn't be thread
safe, and (2) use @threadsafe to document functions that we chose to
implement as thread safe even though POSIX didn't mandate it.
- Tidy up the clock_gettime() implementation. We're now trying out a
cleaner approach to system call support that aims to maintain the
Linux errno convention as long as possible. This also fixes bugs that
existed previously, where the vDSO errno wasn't being translated
properly. The gettimeofday() system call is now a wrapper for
clock_gettime(), which reduces bloat in apps that use both.
- The recently-introduced improvements to the execute bit on Windows has
had bugs fixed. access(X_OK) on a directory on Windows now succeeds.
fstat() will now perform the MZ/#! ReadFile() operation correctly.
- Windows.h is no longer included in libc/isystem/, because it confused
PCRE's build system into thinking Cosmopolitan is a WIN32 platform.
Cosmo's Windows.h polyfill was never even really that good, since it
only defines a subset of the subset of WIN32 APIs that Cosmo defines.
- The setlongerjmp() / longerjmp() APIs are removed. While they're nice
APIs that are superior to the standardized setjmp / longjmp functions,
they weren't superior enough to not be dead code in the monorepo. If
you use these APIs, please file an issue and they'll be restored.
- The .com appending magic has now been removed from APE Loader.
- Improved async signal safety of read() particularly for longjmp()
- Started adding cancel cleanup handlers for locks / etc on Windows
- Make /dev/tty work better particularly for uses like `foo | less`
- Eagerly read console input into a linked list, so poll can signal
- Fix some libc definitional bugs, which configure scripts detected
- Every unit test now passes on Apple Silicon. The final piece of this
puzzle was porting our POSIX threads cancelation support, since that
works differently on ARM64 XNU vs. AMD64. Our semaphore support on
Apple Silicon is also superior now compared to AMD64, thanks to the
grand central dispatch library which lets *NSYNC locks go faster.
- The Cosmopolitan runtime is now more stable, particularly on Windows.
To do this, thread local storage is mandatory at all runtime levels,
and the innermost packages of the C library is no longer being built
using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
process startup phase, and then later on the runtime re-allocates it
either statically or dynamically to support code using _Thread_local.
fork() and execve() now do a better job cooperating with threads. We
can now check how much stack memory is left in the process or thread
when functions like kprintf() / execve() etc. call alloca(), so that
ENOMEM can be raised, reduce a buffer size, or just print a warning.
- POSIX signal emulation is now implemented the same way kernels do it
with pthread_kill() and raise(). Any thread can interrupt any other
thread, regardless of what it's doing. If it's blocked on read/write
then the killer thread will cancel its i/o operation so that EINTR can
be returned in the mark thread immediately. If it's doing a tight CPU
bound operation, then that's also interrupted by the signal delivery.
Signal delivery works now by suspending a thread and pushing context
data structures onto its stack, and redirecting its execution to a
trampoline function, which calls SetThreadContext(GetCurrentThread())
when it's done.
- We're now doing a better job managing locks and handles. On NetBSD we
now close semaphore file descriptors in forked children. Semaphores on
Windows can now be canceled immediately, which means mutexes/condition
variables will now go faster. Apple Silicon semaphores can be canceled
too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
syscalls are now used on XNU when appropriate to ensure pthread_cancel
requests aren't lost. The MbedTLS library has been updated to support
POSIX thread cancelations. See tool/build/runitd.c for an example of
how it can be used for production multi-threaded tls servers. Handles
on Windows now leak less often across processes. All i/o operations on
Windows are now overlapped, which means file pointers can no longer be
inherited across dup() and fork() for the time being.
- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
which means, for example, that posix_spawn() now goes 3x faster. POSIX
spawn is also now more correct. Like Musl, it's now able to report the
failure code of execve() via a pipe although our approach favors using
shared memory to do that on systems that have a true vfork() function.
- We now spawn a thread to deliver SIGALRM to threads when setitimer()
is used. This enables the most precise wakeups the OS makes possible.
- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
it turned out the kernel would actually commit the PT_GNU_STACK size
which caused RSS to be 6mb for every process. Now it's down to ~4kb.
On Apple Silicon, we reduce the mandatory upstream thread size to the
smallest possible size to reduce the memory overhead of Cosmo threads.
The examples directory has a program called greenbean which can spawn
a web server on Linux with 10,000 worker threads and have the memory
usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
thread-local storage is now optional; it won't be allocated until the
pthread_setspecific/getspecific functions are called. On Windows, the
threads that get spawned which are internal to the libc implementation
use reserve rather than commit memory, which shaves a few hundred kb.
- sigaltstack() is now supported on Windows, however it's currently not
able to be used to handle stack overflows, since crash signals are
still generated by WIN32. However the crash handler will still switch
to the alt stack, which is helpful in environments with tiny threads.
- Test binaries are now smaller. Many of the mandatory dependencies of
the test runner have been removed. This ensures many programs can do a
better job only linking the the thing they're testing. This caused the
test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb
- long double is no longer used in the implementation details of libc,
except in the APIs that define it. The old code that used long double
for time (instead of struct timespec) has now been thoroughly removed.
- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
backtraces itself, it'll just print a command you can run on the shell
using our new `cosmoaddr2line` program to view the backtrace.
- Crash report signal handling now works in a much better way. Instead
of terminating the process, it now relies on SA_RESETHAND so that the
default SIG_IGN behavior can terminate the process if necessary.
- Our pledge() functionality has now been fully ported to AARCH64 Linux.
This changes *NSYNC to allocate waiters on the stack so our locks don't
need to depend on dynamic memory. This make our runtiem simpler, and it
also fixes bugs with thread cancellation support.
The new asynchronous signal delivery technique is now also being used
for tkill(), raise(), etc. Many subtle issues have been addresesd. We
now signal handling on Windows that's remarkably similar to the POSIX
behaviors. However that's just across threads. We're lacking a way to
have the signal semantics work well, across multiple WIN32 processes.
The stdio reader thread now appears to be working recursively along
cosmopolitan subprocesses. For example, it's now possible to launch
vim.com from the unbourne.com bestline repl, thanks to hacks plus a
bug fix to select() timeouts.