Now that our socket system call polyfills are good enough to support
Musl's DNS library we should be using that rather than the barebones
domain name system implementation we rolled on our own. There's many
benefits to making this change. So many, that I myself wouldn't feel
qualified to enumerate them all. The Musl DNS code had to be changed
in order to support Windows of course, which looks very solid so far
- Use good ELF technique in cosmo_dlopen()
- Make strerror() conform more to other libc impls
- Introduce __clear_cache() and use it in cosmo_dlopen()
- Remove libc/fmt/fmt.h header (trying to kill off LIBC_FMT)
We now have an `#include <cxxabi.h>` header which defines all the APIs
Cosmopolitan's implemented so far. The `cosmocc` README.md file is now
greatly expanded with documentation.
Every program built using Cosmopolitan is statically-linked. However
there are some cases, e.g. GUIs and video drivers, where linking the
host platform libraries is desirable. So what we do in such cases is
launch a stub executable using the host platform's libc, and longjmp
back into this executable. The stub executable passes back to us the
platform-specific dlopen() implementation, which we shall then wrap.
Here's the list of platforms that are supported so far:
- x86-64 Linux w/ Glibc
- x86-64 Linux w/ Musl Libc
- x86-64 FreeBSD
- x86-64 Windows
- aarch64 Linux w/ Glibc
- aarch64 MacOS
What this means is your Cosmo programs can call foreign functions on
your host operating system. However, it's important to note that any
foreign library you link won't have the ability to call functions in
your Cosmopolitan program. For example it's now technically possible
that Lua can load a module, however that almost certainly won't work
since the Lua module won't have access to Cosmo's Lua API.
Kudos to @jacereda for figuring out how to do this.
This function was invented by the BSDs (it's not in POSIX.1). It
provides a high-level interface into ioctl(SIOCGIFCONF) which is
comparatively clumsy to use. We already made the ioctls portable
across our entire support vector back in 2021, so this interface
is portable too. See o//tool/viz/getifaddrs.com for our demo app
- We now serialize the file descriptor table when spawning / executing
processes on Windows. This means you can now inherit more stuff than
just standard i/o. It's needed by bash, which duplicates the console
to file descriptor #255. We also now do a better job serializing the
environment variables, so you're less likely to encounter E2BIG when
using your bash shell. We also no longer coerce environ to uppercase
- execve() on Windows now remotely controls its parent process to make
them spawn a replacement for itself. Then it'll be able to terminate
immediately once the spawn succeeds, without having to linger around
for the lifetime as a shell process for proxying the exit code. When
process worker thread running in the parent sees the child die, it's
given a handle to the new child, to replace it in the process table.
- execve() and posix_spawn() on Windows will now provide CreateProcess
an explicit handle list. This allows us to remove handle locks which
enables better fork/spawn concurrency, with seriously correct thread
safety. Other codebases like Go use the same technique. On the other
hand fork() still favors the conventional WIN32 inheritence approach
which can be a little bit messy, but is *controlled* by guaranteeing
perfectly clean slates at both the spawning and execution boundaries
- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
there's no reason to use that and it's only supported by FreeBSD. By
using the system word size, signal mask manipulation on Windows goes
very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
Windows to take advantage of signal masking, now that it's much more
pleasant to use.
- All the overlapped i/o code on Windows has been rewritten for pretty
good signal and cancelation safety. We're now able to ensure overlap
data structures are cleaned up so long as you don't longjmp() out of
out of a signal handler that interrupted an i/o operation. Latencies
are also improved thanks to the removal of lots of "busy wait" code.
Waits should be optimal for everything except poll(), which shall be
the last and final demon we slay in the win32 i/o horror show.
- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
as RUSAGE_SELF, thanks to aggregation in the process manager thread.
- This change fixes a bug that allowed unbuffered printf() output (to
streams like stderr) to be truncated. This regression was introduced
some time between now and the last release.
- POSIX specifies all functions as thread safe by default. This change
works towards cleaning up our use of the @threadsafe / @threadunsafe
documentation annotations to reflect that. The goal is (1) to use
@threadunsafe to document functions which POSIX say needn't be thread
safe, and (2) use @threadsafe to document functions that we chose to
implement as thread safe even though POSIX didn't mandate it.
- Tidy up the clock_gettime() implementation. We're now trying out a
cleaner approach to system call support that aims to maintain the
Linux errno convention as long as possible. This also fixes bugs that
existed previously, where the vDSO errno wasn't being translated
properly. The gettimeofday() system call is now a wrapper for
clock_gettime(), which reduces bloat in apps that use both.
- The recently-introduced improvements to the execute bit on Windows has
had bugs fixed. access(X_OK) on a directory on Windows now succeeds.
fstat() will now perform the MZ/#! ReadFile() operation correctly.
- Windows.h is no longer included in libc/isystem/, because it confused
PCRE's build system into thinking Cosmopolitan is a WIN32 platform.
Cosmo's Windows.h polyfill was never even really that good, since it
only defines a subset of the subset of WIN32 APIs that Cosmo defines.
- The setlongerjmp() / longerjmp() APIs are removed. While they're nice
APIs that are superior to the standardized setjmp / longjmp functions,
they weren't superior enough to not be dead code in the monorepo. If
you use these APIs, please file an issue and they'll be restored.
- The .com appending magic has now been removed from APE Loader.
- ARM Neon headers are now exported in libc/isystem/
- stat() and access() now do a better job reporting which files are
executable which ones aren't. They do this by reading the first two
bytes in a file to see if it's `MZ` or `#!`.
- Every unit test now passes on Apple Silicon. The final piece of this
puzzle was porting our POSIX threads cancelation support, since that
works differently on ARM64 XNU vs. AMD64. Our semaphore support on
Apple Silicon is also superior now compared to AMD64, thanks to the
grand central dispatch library which lets *NSYNC locks go faster.
- The Cosmopolitan runtime is now more stable, particularly on Windows.
To do this, thread local storage is mandatory at all runtime levels,
and the innermost packages of the C library is no longer being built
using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
process startup phase, and then later on the runtime re-allocates it
either statically or dynamically to support code using _Thread_local.
fork() and execve() now do a better job cooperating with threads. We
can now check how much stack memory is left in the process or thread
when functions like kprintf() / execve() etc. call alloca(), so that
ENOMEM can be raised, reduce a buffer size, or just print a warning.
- POSIX signal emulation is now implemented the same way kernels do it
with pthread_kill() and raise(). Any thread can interrupt any other
thread, regardless of what it's doing. If it's blocked on read/write
then the killer thread will cancel its i/o operation so that EINTR can
be returned in the mark thread immediately. If it's doing a tight CPU
bound operation, then that's also interrupted by the signal delivery.
Signal delivery works now by suspending a thread and pushing context
data structures onto its stack, and redirecting its execution to a
trampoline function, which calls SetThreadContext(GetCurrentThread())
when it's done.
- We're now doing a better job managing locks and handles. On NetBSD we
now close semaphore file descriptors in forked children. Semaphores on
Windows can now be canceled immediately, which means mutexes/condition
variables will now go faster. Apple Silicon semaphores can be canceled
too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
syscalls are now used on XNU when appropriate to ensure pthread_cancel
requests aren't lost. The MbedTLS library has been updated to support
POSIX thread cancelations. See tool/build/runitd.c for an example of
how it can be used for production multi-threaded tls servers. Handles
on Windows now leak less often across processes. All i/o operations on
Windows are now overlapped, which means file pointers can no longer be
inherited across dup() and fork() for the time being.
- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
which means, for example, that posix_spawn() now goes 3x faster. POSIX
spawn is also now more correct. Like Musl, it's now able to report the
failure code of execve() via a pipe although our approach favors using
shared memory to do that on systems that have a true vfork() function.
- We now spawn a thread to deliver SIGALRM to threads when setitimer()
is used. This enables the most precise wakeups the OS makes possible.
- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
it turned out the kernel would actually commit the PT_GNU_STACK size
which caused RSS to be 6mb for every process. Now it's down to ~4kb.
On Apple Silicon, we reduce the mandatory upstream thread size to the
smallest possible size to reduce the memory overhead of Cosmo threads.
The examples directory has a program called greenbean which can spawn
a web server on Linux with 10,000 worker threads and have the memory
usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
thread-local storage is now optional; it won't be allocated until the
pthread_setspecific/getspecific functions are called. On Windows, the
threads that get spawned which are internal to the libc implementation
use reserve rather than commit memory, which shaves a few hundred kb.
- sigaltstack() is now supported on Windows, however it's currently not
able to be used to handle stack overflows, since crash signals are
still generated by WIN32. However the crash handler will still switch
to the alt stack, which is helpful in environments with tiny threads.
- Test binaries are now smaller. Many of the mandatory dependencies of
the test runner have been removed. This ensures many programs can do a
better job only linking the the thing they're testing. This caused the
test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb
- long double is no longer used in the implementation details of libc,
except in the APIs that define it. The old code that used long double
for time (instead of struct timespec) has now been thoroughly removed.
- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
backtraces itself, it'll just print a command you can run on the shell
using our new `cosmoaddr2line` program to view the backtrace.
- Crash report signal handling now works in a much better way. Instead
of terminating the process, it now relies on SA_RESETHAND so that the
default SIG_IGN behavior can terminate the process if necessary.
- Our pledge() functionality has now been fully ported to AARCH64 Linux.
The stdio reader thread now appears to be working recursively along
cosmopolitan subprocesses. For example, it's now possible to launch
vim.com from the unbourne.com bestline repl, thanks to hacks plus a
bug fix to select() timeouts.
- Invent openatemp() API
- Invent O_UNLINK open flag
- Introduce getenv_secure() API
- Remove `git pull` from cosmocc
- Fix utimes() when path is NULL
- Fix mktemp() to never return NULL
- Fix utimensat() UTIME_OMIT on XNU
- Improve utimensat() code for RHEL5
- Turn `argv[0]` C:/ to /C/ on Windows
- Introduce tmpnam() and tmpnam_r() APIs
- Fix more const issues with internal APIs
- Permit utimes() on WIN32 in O_RDONLY mode
- Fix fdopendir() to check fd is a directory
- Fix recent crash regression in landlock make
- Fix futimens(AT_FDCWD, NULL) to return EBADF
- Use workaround so `make -j` doesn't fork bomb
- Rename dontdiscard to __wur (just like glibc)
- Fix st_size for WIN32 symlinks containing UTF-8
- Introduce stdio ext APIs needed by GNU coreutils
- Fix lstat() on WIN32 for symlinks to directories
- Move some constants from normalize.inc to limits.h
- Fix segv with memchr() and memcmp() overlapping page
- Implement POSIX fflush() behavior for reader streams
- Implement AT_SYMLINK_NOFOLLOW for utimensat() on WIN32
- Don't change read-only status of existing files on WIN32
- Correctly handle `0x[^[:xdigit:]]` case in strtol() functions
- Remove PAGESIZE constant
- Fix realloc() documentation
- Fix ttyname_r() error reporting
- Make forking more reliable on Windows
- Make execvp() a few microseconds faster
- Make system() a few microseconds faster
- Tighten up the socket-related magic numbers
- Loosen restrictions on mmap() offset alignment
- Improve GetProgramExecutableName() with getenv("_")
- Use mkstemp() as basis for mktemp(), tmpfile(), tmpfd()
- Fix flakes in pthread_cancel_test, unix_test, fork_test
- Fix recently introduced futex stack overflow regression
- Let sockets be passed as stdio to subprocesses on Windows
- Improve security of bind() on Windows w/ SO_EXCLUSIVEADDRUSE
- tcgetpgrp(STDIN_FILENO) should be equal to getpgrp() on Windows also,
found while reading wget source code which uses this check to decide
whether to print to stderr or to a file
- IN6_ADDR_ARE_EQUAL is a comparison macro used when IPV6 is allowed,
found while reading CPython3.11 source code
- the changes in signal.h and addition of ucontext.h are because
CPython3.11 source code expect sigaltstack to be available
- the sqlite3.mk change is because CPython3.11 requires sqlite3 to be
built with -DOMIT_SHARED_CACHE
- unistd.h has getopt.h now, because some libraries like it there
- This commit mints a new release of APE Loader v1.2 which supports
loading ELF programs with a non-contiguous virtual address layout
even though we've never been able to take advantage of it, due to
how `objcopy -SO binary` fills any holes left by PT_LOAD. This'll
change soon, since we'll have a new way of creating APE binaries.
- The undiamonding trick with our ioctl() implementation is removed
since POSIX has been killing ioctl() for years and they've done a
much better job. One problem it resolves, is that ioctl(FIONREAD)
wasn't working earlier and that caused issues when building Emacs
- Fix unused local variable errors
- Remove yoinks from sigaction() header
- Add nox87 and aarch64 to github actions
- Fix cosmocc -fportcosmo in linking mode
- It's now possible to build `make m=llvm o/llvm/libc`
- Fix handling of precision in hex float formatting
- Enhance the cocmd interpreter for system() and popen()
- Manually ran the Lua unit tests, which are now passing
- Let stdio i/o operations happen when file is in error state
- We're now saving and restoring xmm in ftrace out of paranoia
This change figures out some of the build configuration issues we've
been having with libcxx. The c++ span header is added. Per a Discord
discussion we're now turning off `-g` for the default build mode, so
consider using `make MODE=dbg` or `make MODE=zero` for GDB debugging
which works much better than `MODE=` ever has. Note that the default
build mode has always had very good function call / system call logs
plus you can still use ShowCrashReports() for backtrace. Making this
change ensures cosmocc will better conform to FOSS norms. Lastly the
LoadZipArgs() API has been added to cosmopolitan.a and <cosmo.h>.
The *NSYNC linked list API is good enough that it deserves to be part of
the C libray, so this change writes an improved version of it which uses
that offsetof() trick from the Linux Kernel. We vendor all of the *NSYNC
tests in third_party which helped confirm the needed refactoring is safe
This change also deletes more old code that didn't pan out. My goal here
is to work towards a vision where the Cosmopolitan core libraries become
less experimental and more focused on curation. This better reflects the
current level of quality we've managed to achieve.
- Found some bugs in LLVM compiler-rt library
- The useless LIBC_STUBS package is now deleted
- Improve the overflow checking story even further
- Get chibicc tests working in MODE=dbg mode again
- The libc/isystem/ headers now have correctly named guards
This change takes an entirely new approach to the incremental linking of
pkzip executables. The assets created by zipobj.com are now treated like
debug data. After a .com.dbg is compiled, fixupobj.com should be run, so
it can apply fixups to the offsets and move the zip directory to the end
of the file. Since debug data doesn't get objcopy'd, a new tool has been
introduced called zipcopy.com which should be run after objcopy whenever
a .com file is created. This is all automated by the `cosmocc` toolchain
which is rapidly becoming the new recommended approach.
This change also introduces the new C23 checked arithmetic macros.
This change improves the way internal APIs are being hidden behind the
`COSMO` define. The cosmo.h header will take care of defining that, so
that a separate define statement isn't needed. This change also does a
lot more to define which APIs are standard, and which belong to Cosmo.