This change gets GNU grep working. What caused it to not work, is it
wouldn't write to an output file descriptor when its dev/ino equaled
/dev/null's. So now we invent special dev/ino values for these files
- We now serialize the file descriptor table when spawning / executing
processes on Windows. This means you can now inherit more stuff than
just standard i/o. It's needed by bash, which duplicates the console
to file descriptor #255. We also now do a better job serializing the
environment variables, so you're less likely to encounter E2BIG when
using your bash shell. We also no longer coerce environ to uppercase
- execve() on Windows now remotely controls its parent process to make
them spawn a replacement for itself. Then it'll be able to terminate
immediately once the spawn succeeds, without having to linger around
for the lifetime as a shell process for proxying the exit code. When
process worker thread running in the parent sees the child die, it's
given a handle to the new child, to replace it in the process table.
- execve() and posix_spawn() on Windows will now provide CreateProcess
an explicit handle list. This allows us to remove handle locks which
enables better fork/spawn concurrency, with seriously correct thread
safety. Other codebases like Go use the same technique. On the other
hand fork() still favors the conventional WIN32 inheritence approach
which can be a little bit messy, but is *controlled* by guaranteeing
perfectly clean slates at both the spawning and execution boundaries
- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
there's no reason to use that and it's only supported by FreeBSD. By
using the system word size, signal mask manipulation on Windows goes
very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
Windows to take advantage of signal masking, now that it's much more
pleasant to use.
- All the overlapped i/o code on Windows has been rewritten for pretty
good signal and cancelation safety. We're now able to ensure overlap
data structures are cleaned up so long as you don't longjmp() out of
out of a signal handler that interrupted an i/o operation. Latencies
are also improved thanks to the removal of lots of "busy wait" code.
Waits should be optimal for everything except poll(), which shall be
the last and final demon we slay in the win32 i/o horror show.
- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
as RUSAGE_SELF, thanks to aggregation in the process manager thread.
- This change fixes a bug that allowed unbuffered printf() output (to
streams like stderr) to be truncated. This regression was introduced
some time between now and the last release.
- POSIX specifies all functions as thread safe by default. This change
works towards cleaning up our use of the @threadsafe / @threadunsafe
documentation annotations to reflect that. The goal is (1) to use
@threadunsafe to document functions which POSIX say needn't be thread
safe, and (2) use @threadsafe to document functions that we chose to
implement as thread safe even though POSIX didn't mandate it.
- Tidy up the clock_gettime() implementation. We're now trying out a
cleaner approach to system call support that aims to maintain the
Linux errno convention as long as possible. This also fixes bugs that
existed previously, where the vDSO errno wasn't being translated
properly. The gettimeofday() system call is now a wrapper for
clock_gettime(), which reduces bloat in apps that use both.
- The recently-introduced improvements to the execute bit on Windows has
had bugs fixed. access(X_OK) on a directory on Windows now succeeds.
fstat() will now perform the MZ/#! ReadFile() operation correctly.
- Windows.h is no longer included in libc/isystem/, because it confused
PCRE's build system into thinking Cosmopolitan is a WIN32 platform.
Cosmo's Windows.h polyfill was never even really that good, since it
only defines a subset of the subset of WIN32 APIs that Cosmo defines.
- The setlongerjmp() / longerjmp() APIs are removed. While they're nice
APIs that are superior to the standardized setjmp / longjmp functions,
they weren't superior enough to not be dead code in the monorepo. If
you use these APIs, please file an issue and they'll be restored.
- The .com appending magic has now been removed from APE Loader.
- Every unit test now passes on Apple Silicon. The final piece of this
puzzle was porting our POSIX threads cancelation support, since that
works differently on ARM64 XNU vs. AMD64. Our semaphore support on
Apple Silicon is also superior now compared to AMD64, thanks to the
grand central dispatch library which lets *NSYNC locks go faster.
- The Cosmopolitan runtime is now more stable, particularly on Windows.
To do this, thread local storage is mandatory at all runtime levels,
and the innermost packages of the C library is no longer being built
using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
process startup phase, and then later on the runtime re-allocates it
either statically or dynamically to support code using _Thread_local.
fork() and execve() now do a better job cooperating with threads. We
can now check how much stack memory is left in the process or thread
when functions like kprintf() / execve() etc. call alloca(), so that
ENOMEM can be raised, reduce a buffer size, or just print a warning.
- POSIX signal emulation is now implemented the same way kernels do it
with pthread_kill() and raise(). Any thread can interrupt any other
thread, regardless of what it's doing. If it's blocked on read/write
then the killer thread will cancel its i/o operation so that EINTR can
be returned in the mark thread immediately. If it's doing a tight CPU
bound operation, then that's also interrupted by the signal delivery.
Signal delivery works now by suspending a thread and pushing context
data structures onto its stack, and redirecting its execution to a
trampoline function, which calls SetThreadContext(GetCurrentThread())
when it's done.
- We're now doing a better job managing locks and handles. On NetBSD we
now close semaphore file descriptors in forked children. Semaphores on
Windows can now be canceled immediately, which means mutexes/condition
variables will now go faster. Apple Silicon semaphores can be canceled
too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
syscalls are now used on XNU when appropriate to ensure pthread_cancel
requests aren't lost. The MbedTLS library has been updated to support
POSIX thread cancelations. See tool/build/runitd.c for an example of
how it can be used for production multi-threaded tls servers. Handles
on Windows now leak less often across processes. All i/o operations on
Windows are now overlapped, which means file pointers can no longer be
inherited across dup() and fork() for the time being.
- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
which means, for example, that posix_spawn() now goes 3x faster. POSIX
spawn is also now more correct. Like Musl, it's now able to report the
failure code of execve() via a pipe although our approach favors using
shared memory to do that on systems that have a true vfork() function.
- We now spawn a thread to deliver SIGALRM to threads when setitimer()
is used. This enables the most precise wakeups the OS makes possible.
- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
it turned out the kernel would actually commit the PT_GNU_STACK size
which caused RSS to be 6mb for every process. Now it's down to ~4kb.
On Apple Silicon, we reduce the mandatory upstream thread size to the
smallest possible size to reduce the memory overhead of Cosmo threads.
The examples directory has a program called greenbean which can spawn
a web server on Linux with 10,000 worker threads and have the memory
usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
thread-local storage is now optional; it won't be allocated until the
pthread_setspecific/getspecific functions are called. On Windows, the
threads that get spawned which are internal to the libc implementation
use reserve rather than commit memory, which shaves a few hundred kb.
- sigaltstack() is now supported on Windows, however it's currently not
able to be used to handle stack overflows, since crash signals are
still generated by WIN32. However the crash handler will still switch
to the alt stack, which is helpful in environments with tiny threads.
- Test binaries are now smaller. Many of the mandatory dependencies of
the test runner have been removed. This ensures many programs can do a
better job only linking the the thing they're testing. This caused the
test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb
- long double is no longer used in the implementation details of libc,
except in the APIs that define it. The old code that used long double
for time (instead of struct timespec) has now been thoroughly removed.
- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
backtraces itself, it'll just print a command you can run on the shell
using our new `cosmoaddr2line` program to view the backtrace.
- Crash report signal handling now works in a much better way. Instead
of terminating the process, it now relies on SA_RESETHAND so that the
default SIG_IGN behavior can terminate the process if necessary.
- Our pledge() functionality has now been fully ported to AARCH64 Linux.
If threads are being used, then fork() will now acquire and release and
runtime locks so that fork() may be safely used from threads. This also
makes vfork() thread safe, because pthread mutexes will do nothing when
the process is a child of vfork(). More torture tests have been written
to confirm this all works like a charm. Additionally:
- Invent hexpcpy() api
- Rename nsync_malloc_() to kmalloc()
- Complete posix named semaphore implementation
- Make pthread_create() asynchronous signal safe
- Add rm, rmdir, and touch to command interpreter builtins
- Invent sigisprecious() and modify sigset functions to use it
- Add unit tests for posix_spawn() attributes and fix its bugs
One unresolved problem is the reclaiming of *NSYNC waiter memory in the
forked child processes, within apps which have threads waiting on locks
The organization of the source files is now much more rational.
Old experiments that didn't work out are now deleted. Naming of
things like files is now more intuitive.
- We now kill the program on violations like OpenBSD
- We now print a message explaining which promise is needed
- This change also fixes a linkage bug with thread local storage
- Your sigaction() handlers should now be more thread safe
A new `__pledge_mode` global has been introduced to make pledge() more
customizable on Linux. For example:
__attribute__((__constructor__)) static void init(void) {
__pledge_mode = SECCOMP_RET_ERRNO | EPERM;
}
Can be used to restore our old permissive pledge() behavior.
Calls to lock/unlock functions are now NOPs by default. The first time
clone() is called, they get turned into CALL instructions. Doing this
caused funcctions like fputc() to shrink from 85 bytes to 45+4 bytes.
Since the ANSI solution of `(__threaded && lock())` inlines os much
superfluous binary content into functions all over the place.
- Finish cleaning up the stdio unlocked APIs
- Make __cxa_finalize() properly thread safe
- Don't log locks if threads aren't being used
- Add some more mutex guards to places using _mmi
- Specific lock names now appear in the --ftrace logs
- Fix mkdeps.com generating invalid Makefiles sometimes
- Simplify and fix bugs in the test runner infrastructure
- Fix issue where sometimes some functions wouldn't be logged
This change switches most of the core locks to be re-entrant, in order
to reduce the chance of deadlocking code that does, clever things with
asynchronous signal handlers. This change implements it it in pthreads
so we're one step closer to having a standardized threading primitives
- Document redbean's argon2 module
- Fix regressions in cthreads library
- Make testlib work better with threads
- Give the cthreads library lots of love
- Remove some of the stdio assembly code
- Implement getloadavg() across platforms
- Code size optimizations for errnos, etc.
- Only check for signals in main thread on Windows
- Make errnos for dup2 / dup3 consistent with posix
This change also fixes a bug in the argon2 module, where the NUL
terminator was being included in the hash encoded ascii string. This
shouldn't require any database migrations to folks who found this module
and productionized it, since the argon2 library treats it as a c string.