This change implements the compiler runtime for ARM v8.1 ISE atomics and
gets rid of the mandatory -mno-outline-atomics flag. It can dramatically
speed things up, on newer ARM CPUs, as indicated by the changed lines in
test/libc/thread/footek_test.c. In llamafile dispatching on hwcap atomic
also shaved microseconds off synchronization barriers.
So far I haven't found any way to run native Arm64 code on Windows Arm64
without using MSVC. When I build a PE binary from scratch that should be
a valid Windows Arm64 program, the OS refuses to run it. Possibly due to
requiring additional content like XML manifests or relocation or control
flow integrity data that isn't normally required on x64. I've also tried
using VirtualAlloc2() to JIT an Arm64 native function, but VirtualAlloc2
always fails with invalid parameter. I tried using MSVC to create an ARM
DLL that my x64 emulated program can link at runtime, to pass a function
pointer with ARM code, but LoadLibrary() rejects ARM DLLs as invalid exe
The only option left, is likely to write a new program like ape/ape-m1.c
which can be compiled by MSVC to load and run an AARCH64 ELF executable.
The emulated x64 binary would detect emulation using IsWow64Process2 and
then drop the loader executable in a temporary folder, and re-launch the
original executable, using the Arm64 segments of the cosmocc fat binary.
It turns out sched_getcpu() didn't work on many platforms. So the system
call now has tests and is well documented. We now employ new workarounds
on platforms where it isn't supported in our malloc() implementation. It
was previously the case that malloc() was only scalable on Linux/Windows
for x86-64. Now the other platforms are scalable too.
This is a breaking change. It defines the new environment variable named
_COSMO_FDS_V2 which is used for inheriting non-stdio file descriptors on
execve() or posix_spawn(). No effort has been spent thus far integrating
with the older variable. If a new binary launches the older ones or vice
versa they'll only be able to pass stdin / stdout / stderr to each other
therefore it's important that you upgrade all your cosmo binaries if you
depend on this functionality. You'll be glad you did because inheritance
of file descriptors is more aligned with the POSIX standard than before.
This change ensures that if a file descriptor for an open disk file gets
shared by multiple processes within a process tree, then lseek() changes
will be visible across processes, and read() / write() are synchronized.
Note this only applies to Windows, because UNIX kernels already do this.
We now have implement all of Musl's localization code, the same way that
Musl implements localization. You may need setlocale(LC_ALL, "C.UTF-8"),
just in case anything stops working as expected.
This change solves an issue where many threads attempting to spawn forks
at once would cause fork() performance to degrade with the thread count.
Things got real nasty on NetBSD, which slowed down the whole test fleet,
because there's no vfork() and we're forced to use fork() in our server.
threads count task
1 1062 fork+exit+wait
2 668 fork+exit+wait
4 66 fork+exit+wait
8 19 fork+exit+wait
16 22 fork+exit+wait
32 16 fork+exit+wait
Things are now much less bad on NetBSD, but not great, since it does not
have futexes; we rely on its semaphore file descriptors to do conditions
threads count task
1 1085 fork+exit+wait
2 842 fork+exit+wait
4 532 fork+exit+wait
8 400 fork+exit+wait
16 276 fork+exit+wait
32 66 fork+exit+wait
With OpenBSD which also lacks vfork(), things were just as bad as NetBSD
threads count task
1 584 fork+exit+wait
2 687 fork+exit+wait
4 206 fork+exit+wait
8 24 fork+exit+wait
16 33 fork+exit+wait
32 26 fork+exit+wait
But since OpenBSD has futexes fork() works terrifically thanks to *NSYNC
threads count task
1 525 fork+exit+wait
2 580 fork+exit+wait
4 451 fork+exit+wait
8 479 fork+exit+wait
16 408 fork+exit+wait
32 373 fork+exit+wait
This issue would most likely only manifest itself, when pthread_atfork()
callers manage to slip a spin lock into the outermost position of fork's
list of locks. Since fork() is very slow, a spin lock can be devastating
Needless to say vfork() rules and anyone who says differently is kidding
themselves. Look at what a FreeBSD 14.1 virtual machine with equal specs
can do over the course of three hundred milliseconds.
threads count task
1 2559 vfork+exit+wait
2 5389 vfork+exit+wait
4 34933 vfork+exit+wait
8 43273 vfork+exit+wait
16 49648 vfork+exit+wait
32 40247 vfork+exit+wait
So it's a shame that so few OSes support vfork(). It creates an unsavory
situation, where someone wanting to build a server that spawns processes
would be better served to not use threads and favor a multiprocess model
The cosmocc.zip toolchain will now include four builds of the libcosmo.a
runtime libraries. You can pass the -mdbg flag if you want to debug your
cosmopolitan runtime. You can pass the -moptlinux flag if you don't want
windows code lurking in your binary. See tool/cosmocc/README.md for more
details on how these flags may be used and their important implications.
It's been thirteen years and C++ still hasn't implemented this wonderful
simple builtin keyword. In C++23 a solution was provided for making this
work in C++ which is libcxx's stdatomic.h. Including that header schleps
in literally 253 unique header files!! Many of the header files it needs
are libc header files like pthread.h where we need to have the _Atomic()
keyword, but since <atomic> depends on pthreads we can't have it include
the <stdatomic.h> header that defines _Atomic for C++ users, and instead
we simply make the type non-atomic, hoping and praying only C code shall
use those internal data structures. This just shows how STL clowns can't
be trusted to define the innermost primitives of a language. They should
instead be focusing on being the best at algorithms and data structures.
- NetBSD should now have faster synchronization
- POSIX barriers may now be shared across processes
- An edge case with memory map tracking has been fixed
- Grand Central Dispatch is no longer used on MacOS ARM64
- POSIX mutexes in normal mode now use futexes across processes