This change switches c++ exception handling from sjlj to standard dwarf.
It's needed because clang for aarch64 doesn't support sjlj. It turns out
that libunwind had a bare-metal configuration that made this easy to do.
This change gets the new experimental cosmocc -mclang flag in a state of
working so well that it can now be used to build all of llamafile and it
goes 3x faster in terms of build latency, without trading away any perf.
The int_fast16_t and int_fast32_t types are now always defined as 32-bit
in the interest of having more abi consistency between cosmocc -mgcc and
-mclang mode.
C++ code compiles very slowly with cosmocc, possibly because we're using
LLVM LIBCXX with GCC, and LLVM doesn't work as hard to make GCC go fast.
Therefore, it should be possible, to ask cosmocc to favor Clang over GCC
under the hood. On llamafile, my intention's to use this to make certain
files, e.g. llama.cpp/common.cpp, go from taking 17 seconds to 5 seconds
This new -mclang flag isn't ready for production yet since there's still
the question of how to get Clang to generate SJLJ exception code. If you
use this, then it's recommended you also pass -fno-exceptions.
The tradeoff is we're adding a 121mb binary to the cosmocc distribution.
There are no plans as of yet to fully migrate to Clang since GCC is very
good and has always treated us well.
Our cosmocc binaries are now built with GCC 14.1, using the Cosmo commit
efb3a34608 from yesterday.
GCC is now configured using --enable-analyzer so you can use -fanalyzer.
The cosmocc.zip toolchain will now include four builds of the libcosmo.a
runtime libraries. You can pass the -mdbg flag if you want to debug your
cosmopolitan runtime. You can pass the -moptlinux flag if you don't want
windows code lurking in your binary. See tool/cosmocc/README.md for more
details on how these flags may be used and their important implications.
The WIN32 CreateProcess() function does not require an .exe or .com
suffix in order to spawn an executable. Now that we have Cosmo bash
we're no longer so dependent on the cmd.exe prompt.
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
It's now possible to pass flags like -Xaarch64-march=armv8.2-a+dotprod
so that cosmocc will use newer ARM ISAs. For AMD64 there's another one
worth mentioning, which looks like this: -Xx86_64-mssse3
This change upgrades to superconfigure z0.0.23 which fixes an issue
where the compiler had harmless /home/... paths baked-in, which are
normally only present in the build environment, and usually skipped
over. Sadly on MacOS calling fstatat() on these paths would lead to
cloud file system ops that caused system calls to take a long time.
That's problematic, since cosmocc needs to be a 100% local command.
We now have an `#include <cxxabi.h>` header which defines all the APIs
Cosmopolitan's implemented so far. The `cosmocc` README.md file is now
greatly expanded with documentation.
The `cosmocc` compiler is now being distributed as a self-contained
toolchain that's path-agnostic and it no longer requires you clone the
Cosmop repo to use it. The bin/ folder has been deleted from the mono
repo. The `fatcosmocc` command has been renamed to `cosmocc`. MacOS
support now works very well.