- NetBSD should now have faster synchronization
- POSIX barriers may now be shared across processes
- An edge case with memory map tracking has been fixed
- Grand Central Dispatch is no longer used on MacOS ARM64
- POSIX mutexes in normal mode now use futexes across processes
It's now possible to create thousands of thousands of sparse independent
memory mappings, without any slowdown. The memory manager is better with
tracking memory protection now, particularly on Windows in a precise way
that can be restored during fork(). You now have the highest quality mem
manager possible. It's even better than some OSes like XNU, where mmap()
is implemented as an O(n) operation which means sadly things aren't much
improved over there. With this change the llamafile HTTP server endpoint
at /tokenize with a prompt of 50 tokens is now able to handle 2.6m r/sec
This fixes a regression in mmap(MAP_FIXED) on Windows caused by a recent
revision. This change also fixes ZipOS so it no longer needs a MAP_FIXED
mapping to open files from the PKZIP store. The memory mapping mutex was
implemented incorrectly earlier which meant that ftrace and strace could
cause cause crashes. This lock and other recursive mutexes are rewritten
so that it should be provable that recursive mutexes in cosmopolitan are
asynchronous signal safe.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
This changes *NSYNC to allocate waiters on the stack so our locks don't
need to depend on dynamic memory. This make our runtiem simpler, and it
also fixes bugs with thread cancellation support.
This change fixes Cosmopolitan so it has fewer opinions about compiler
warnings. The whole repository had to be cleaned up to be buildable in
-Werror -Wall mode. This lets us benefit from things like strict const
checking. Some actual bugs might have been caught too.
This change improves copy_file_range(), sendfile(), splice(), openpty(),
closefrom(), close_range(), fadvise() and posix_fadvise() in addition to
writing tests that confirm things like errno and seeking behavior across
platforms. We now less aggressively polyfill behavior with some of these
functions when the platform support isn't available. Please see:
https://justine.lol/cosmopolitan/functions.html
This makes breaking changes to add underscores to many non-standard
function names provided by the c library. MODE=tiny is now tinier and
we now use smaller locks that are better for tiny apps in this mode.
Some headers have been renamed to be in the same folder as the build
package, so it'll be easier to know which build dependency is needed.
Certain old misguided interfaces have been removed. Intel intrinsics
headers are now listed in libc/isystem (but not in the amalgamation)
to help further improve open source compatibility. Header complexity
has also been reduced. Lastly, more shell scripts are now available.
The organization of the source files is now much more rational.
Old experiments that didn't work out are now deleted. Naming of
things like files is now more intuitive.
pthread_mutex_lock() now uses a better algorithm which goes much faster
in multithreaded environments that have lock contention. This comes at
the cost of adding some fixed-cost overhead to mutex invocations. That
doesn't matter for Cosmopolitan because our core libraries all encode
locking operations as NOP instructions when in single-threaded mode.
Overhead only applies starting the moment you first call clone().
- Finish cleaning up the stdio unlocked APIs
- Make __cxa_finalize() properly thread safe
- Don't log locks if threads aren't being used
- Add some more mutex guards to places using _mmi
- Specific lock names now appear in the --ftrace logs
- Fix mkdeps.com generating invalid Makefiles sometimes
- Simplify and fix bugs in the test runner infrastructure
- Fix issue where sometimes some functions wouldn't be logged
This change switches most of the core locks to be re-entrant, in order
to reduce the chance of deadlocking code that does, clever things with
asynchronous signal handlers. This change implements it it in pthreads
so we're one step closer to having a standardized threading primitives