This essentially re-does the work of #875 on top of master.
This is what I did to check that Cosmo's Lua extensions still worked:
```
$ build/bootstrap/make MODE=aarch64 o/aarch64/third_party/lua/lua
$ ape o/aarch64/third_party/lua/lua
>: 10
10
>: 010
8
>: 0b10
2
>: string.byte("\e")
27
>: "Hello, %s" % {"world"}
Hello, world
>: "*" * 3
***
```
`luaL_traceback2` was used to show the stack trace with parameter
values; it's used in `LuaCallWithTrace`, which is used in Redbean to run
Lua code. You should be able to see the extended stack trace by running
something like this: `redbean -e "function a(b)c()end a(2)"` (with
"params" indicating the extended stack trace):
```
stack traceback:
[string "function a(b)c()end a(2)"]:1: in function 'a', params: b = 2;
[string "function a(b)c()end a(2)"]:1: in main chunk
```
@pkulchenko confirmed that I get the expected result with the updated
code.
This is what I did to check that Lua itself still worked:
```
$ cd third_party/lua/test/
$ ape ../../../o/aarch64/third_party/lua/lua all.lua
```
There's one test failure, in `files.lua`:
```
***** FILE 'files.lua'*****
testing i/o
../../../o/aarch64/third_party/lua/lua: files.lua:84: assertion failed!
stack traceback:
[C]: in function 'assert'
files.lua:84: in main chunk
(...tail calls...)
all.lua:195: in main chunk
[C]: in ?
.>>> closing state <<<
```
That isn't a result of these changes; the same test is failing in
master.
The failure is here:
```lua
if not _port then -- invalid seek
local status, msg, code = io.stdin:seek("set", 1000)
assert(not status and type(msg) == "string" and type(code) == "number")
end
```
The test expects a seek to offset 1,000 on stdin to fail — but it
doesn't. `status` ends up being the new offset rather than `nil`.
If I comment out that one test, the remaining tests succeed.
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
- 10.5% reduction of o//depend dependency graph
- 8.8% reduction in latency of make command
- Fix issue with temporary file cleanup
There's a new -w option in compile.com that turns off the recent
Landlock output path workaround for "good commands" which do not
unlink() the output file like GNU tooling does.
Our new GNU Make unveil sandboxing appears to have zero overhead
in the grand scheme of things. Full builds are pretty fast since
the only thing that's actually slowed us down is probably libcxx
make -j16 MODE=rel
RL: took 85,732,063µs wall time
RL: ballooned to 323,612kb in size
RL: needed 828,560,521µs cpu (11% kernel)
RL: caused 39,080,670 page faults (99% memcpy)
RL: 350,073 context switches (72% consensual)
RL: performed 0 reads and 11,494,960 write i/o operations
pledge() and unveil() no longer consider ENOSYS to be an error.
These functions have also been added to Python's cosmo module.
This change also removes some WIN32 APIs and System Five magnums
which we're not using and it's doubtful anyone else would be too
- Expand redbean UNIX module
- Expand redbean documentation
- Ensure Lua copyright is embedded in binary
- Increase the PATH_MAX limit especially on NT
- Use column major sorting for linenoise completions
- Fix some suboptimalities in redbean's new UNIX API
- Figured out right flags for Multics newline in raw mode
Buffering now has optimal performance, bugs have been fixed, and some
missing apis have been introduced. This implementation is also now more
production worthy since it's less brittle now in terms of system errors.
That's going to help redbean since lua i/o is all based on stdio.
See #97