This change reduces o/tiny/examples/life from 44kb to 24kb in size since
it avoids linking mmap() when unnecessary. This is important, to helping
cosmo not completely lose touch with its roots.
The Cosmopolitan Compiler Collection now includes the following programs
- `ar.ape` is a faster alternative to `ar rcsD` for creating determistic
static archives. It's ~10x faster than GNU because it isn't quadratic.
It'll even outperform LLVM ar by 2x, thanks to writev/copy_file_range.
- `sha256sum.ape` is a faster alternative to the `sha256sum` command. It
goes 2x faster since it leverages vectorized assembly implementations.
- `resymbol` is a brand new program we invented, like objcopy, that lets
you rename all the global symbols in a .o file to have a new suffix or
prefix. In the future, this will be used by cosmocc automatically when
building -O3 math kernels, that need to be vectorized for all hardware
- `gzip.ape` is a faster version of the `gzip` command, that is included
by most Linux distros. It gains better performance using Chromium Zlib
which, once again, includes highly optimized assembly, that Mark Adler
won't merge into the official MS-DOS compatible zlib codebase.
- `cocmd` is the cosmopolitan shell. It can function as a faster `sh -c`
alternative than bash and dash as the `SHELL = /opt/cosmocc/bin/cocmd`
at the top of your Makefile. Please note you should be using the cosmo
fork of GNU make (already included), since normal make won't recognize
this as a bourne-compatible shell and remove the execve() optimization
which makes things slower. In some ways that's true. This doesn't have
a complete POSIX shell implementation. However it's enough for cosmo's
mono repo. It also implements faster behaviors in some respects.
The following programs are also introduced, which aren't as interesting.
The main reason why they're here is so Cosmopolitan's mono repo shall be
able to remove build/bootstrap/ in future editions. That way we can keep
build utilities better up to date, without bloating the git history much
- `chmod.ape` for hermeticity
- `cp.ape` for hermeticity
- `echo.ape` for hermeticity
- `objbincopy` is an objcopy-like tool that's used to build ape loader
- `package.ape` is used for strict dependency checking of object graph
- `rm.ape` for hermeticity
- `touch.ape` for hermeticity
Thanks to @aj47 (techfren.net) the new Cosmo memory manager is confirmed
to be working on Android!! The only issue turned out to be forgetting to
update the program address in the linker script. We now know w/ absolute
certainty that APE binaries as complex as llamafile, now work correctly.
- Ensure SIGTHR isn't blocked in newly created threads
- Use TIB rather than thread_local for thread atexits
- Make POSIX thread keys atomic within thread
- Don't bother logging prctl() to --strace
- Log thread destructor names to --strace
The way to use double linked lists, is to remove all the things you want
to work on, insert them into a new list on the stack. Then once you have
all the work items, you release the lock, do your work, and then lock it
again, to add the shelled out items back to a global freelist.
This fixes a regression in mmap(MAP_FIXED) on Windows caused by a recent
revision. This change also fixes ZipOS so it no longer needs a MAP_FIXED
mapping to open files from the PKZIP store. The memory mapping mutex was
implemented incorrectly earlier which meant that ftrace and strace could
cause cause crashes. This lock and other recursive mutexes are rewritten
so that it should be provable that recursive mutexes in cosmopolitan are
asynchronous signal safe.
This change introduces accumulate, addressof, advance, all_of, distance,
array, enable_if, allocator_traits, back_inserter, bad_alloc, is_signed,
any_of, copy, exception, fill, fill_n, is_same, is_same_v, out_of_range,
lexicographical_compare, is_integral, uninitialized_fill_n, is_unsigned,
numeric_limits, uninitialized_fill, iterator_traits, move_backward, min,
max, iterator_tag, move_iterator, reverse_iterator, uninitialized_move_n
This change experiments with rewriting the ctl::vector class to make the
CTL design more similar to the STL. So far it has not slowed things down
to have 42 #include lines rather than 2, since it's still almost nothing
compared to LLVM's code. In fact the closer we can flirt with being just
like libcxx, the better chance we might have of discovering exactly what
makes it so slow to compile. It would be an enormous discovery if we can
find one simple trick to solving the issue there instead.
This also fixes a bug in `ctl::string(const string &s)` when `s` is big.
We now have a C++ red-black tree implementation that implements standard
template library compatible APIs while compiling 10x faster than libcxx.
It's not as beautiful as the red-black tree implementation in Plinko but
this will get the job done and the test proves it upholds all invariants
This change also restores CheckForMemoryLeaks() support and fixes a real
actual bug I discovered with Doug Lea's dlmalloc_inspect_all() function.
It hasn't been helpful enough to be justify the maintenance burden. What
actually does help is mprotect(), kprintf(), --ftrace and --strace which
can always be counted upon to work correctly. We aren't losing much with
this change. Support for ASAN on AARCH64 was never implemented. Applying
ASAN to the core libc runtimes was disabled many months ago. If there is
some way to have an ASAN runtime for user programs that is less invasive
we can potentially consider reintroducing support. But now is premature.
Actually Portable Executable now supports Android. Cosmo's old mmap code
required a 47 bit address space. The new implementation is very agnostic
and supports both smaller address spaces (e.g. embedded) and even modern
56-bit PML5T paging for x86 which finally came true on Zen4 Threadripper
Cosmopolitan no longer requires UNIX systems to observe the Windows 64kb
granularity; i.e. sysconf(_SC_PAGE_SIZE) will now report the host native
page size. This fixes a longstanding POSIX conformance issue, concerning
file mappings that overlap the end of file. Other aspects of conformance
have been improved too, such as the subtleties of address assignment and
and the various subtleties surrounding MAP_FIXED and MAP_FIXED_NOREPLACE
On Windows, mappings larger than 100 megabytes won't be broken down into
thousands of independent 64kb mappings. Support for MAP_STACK is removed
by this change; please use NewCosmoStack() instead.
Stack overflow avoidance is now being implemented using the POSIX thread
APIs. Please use GetStackBottom() and GetStackAddr(), instead of the old
error-prone GetStackAddr() and HaveStackMemory() APIs which are removed.
Explicitly value-initializes the deleter, even though I have not found a
way to get the deleter to act like it’s been default-initialized in unit
tests so far.
Uses auto in reset. The static cast is apparently not needed (unless I’m
missing some case I didn’t think of.)
Implements the general move constructor - turns out that the reason this
didn’t work before was that default_delete<U> was not move constructible
from default_delete<T>.
Drop inline specifiers from functions defined entirely inside the struct
definition since they are implicitly inline.
* Cleans up reset to match spec
Remove the variants from the T[] specialization. Also follow the spec on
the order of operations in reset, which may matter if we are deleting an
object that has a reference to the unique_ptr that is being reset. (?)
* Tests Base/Derived reset.
* Adds some constexpr declarations.
* Adds default_delete specialization for T[].
* Makes parameters const.
The STL says that these should be replaceable by user code.
new.cc now defines only a few direct functions (including a free wrapper
that perplexingly is needed since g++ didn’t want to alias "free".) Now,
all of the operators are weak references to those functions.
Moves some isbig checks into string.h, enabling smarter optimizations to
be made on small strings. Also we no longer zero out our string prior to
calling the various constructors, buying back the performance we lost on
big strings when we made the small-string optimization. We further add a
little optimization to the big_string copy constructor: if the string is
using half or more of its capacity, then we don’t recompute capacity and
just take the old string’s. As well, the copy constructor always makes a
small string when it will fit, even if copied from a big string that got
truncated.
This also reworks the test to follow the idiom adopted elsewhere re stl,
and adds a helper function to tell if a string is small based on data().
* Add ctl utility.h
Implements forward, move, swap, and declval. This commit also adds a def
for nullptr_t to cxx.inc. We need it now because the CTL headers stopped
including anything from libc++, so we no longer get their basic types.
* Use ctl::swap in string
The STL spec says that swap is located in the string_view header anyawy.
Performance-wise this is a noop, but it’s slightly cleaner.
c.inc (AFAICT erroneously) defined _Atomic(t) as `volatile t *`, when it
should have just said `volatile t`, when __STDC_VERSION__ was too small.
This happens when we’re compiling C++, but in C++11, _Atomic is a define
supplied by the STL rather than a keyword supplied by the compiler. Wait
though, it gets better: in C++11, _Atomic hooks you into the morass that
is stdatomic.h, and ultimately refers everything back to std::atomic<T>.
The gory, horrifying details are in libcxx's __atomic/cxx_atomic_impl.h.
The tldr is that for our purposes it’s fine to just say volatile and use
the normal libc/intrin/atomic.h functions.
#1219 had an issue with noisy testing label. Investigated if there is a
syntax to make it more exclusive, but turns out there isn't one yet. So
let's remove an manually add it in as needed.
Fixes#1219.
The way unique_ptr is supposed to work is as a purely compile-time check
that your raw pointers are getting deleted when they go out of scope. It
should ideally emit the same exact machine code as if you were using raw
pointers with manual deletes.
Part of what this means is that under normal circumstances, a unique_ptr
shouldn’t take up more space than a raw pointer - in other words, sizeof
unique_ptr<T> should == sizeof(T*).
The present PR doesn’t bother with the specialization for array types. I
also left a couple other parts of the STL API unimplemented. I’d love to
see someone else implement these, or I’ll get to them at some point.