- Wrap clock_getres()
- Wrap sched_setscheduler()
- Make sleep() api conformant
- Polyfill sleep() using select()
- Improve clock_gettime() polyfill
- Make nanosleep() POSIX conformant
- Slightly improve some DNS functions
- Further strengthen pledge() sandboxing
- Improve rounding of timeval / timespec
- Allow layering of pledge() calls on Linux
- Polyfill sched_yield() using select() on XNU
- Delete more system constants we probably don't need
- Introduce __assert_disable global
- Improve strsignal() thread safety
- Make system call tracing thread safe
- Fix SO_RCVTIMEO / SO_SNDTIMEO on Windows
- Refactor DescribeFoo() functions into one place
- Fix fork() on Windows when TLS and MAP_STACK exist
- Round upwards in setsockopt(SO_RCVTIMEO) on Windows
- Disable futexes on OpenBSD which seem extremely broken
- Implement a better kludge for monotonic time on Windows
This is similar to the --ftrace (c function call trace) flag, except
it's less noisy since it only logs system calls to stderr. Having this
flag is valuable because (1) system call tracing tells us a lot about
the behavior of complex programs and (2) it's usually very hard to get
system call tracing on various operating systems, e.g. strace, ktrace,
dtruss, truss, nttrace, etc. Especially on Apple platforms where even
with the special boot trick, debuggers still aren't guaranteed to work.
make -j8 o//examples
o//examples/hello.com --strace
This is enabled by default in MODE=, MODE=opt, and MODE=dbg. In MODE=dbg
extra information will be printed.
make -j8 MODE=dbg o/dbg/examples
o/dbg/examples/hello.com --strace |& less
This change also changes:
- Rename IsText() → _istext()
- Rename IsUtf8() → _isutf8()
- Fix madvise() on Windows NT
- Fix empty string case of inet_ntop()
- vfork() wrapper now saves and restores errno
- Update xsigaction() to yoink syscall support
- Use nullness checks when calling weakly linked functions.
- Avoid typedef for reasons described in Linux Kernel style guide.
- Avoid enum in in Windows headers. Earlier in Cosmo's history all one
hundred files in libc/nt/enum/ used to be enums and it resulted in
gigabytes of DWARF data almost as large as everything else in the
codebase combined.
- Bitfields aren't our friends. They have frequent ABI breakages,
inconsistent arithmetic across compilers, and different endianness
between cpus. Compiler authors also haven't invested much roi into
making bit fields go fast so they produce poor assembly.
- Use memccpy() instead of strncpy() or snprintf() for length-bounded
copying of C strings. strncpy() is a misunderstood function and
snprintf() is awesome but memccpy() deserves more love.
Your redbean can now interoperate with clients that require TLS crypto.
This is accomplished using a protocol polyglot that lets us distinguish
between HTTP and HTTPS regardless of the port number. Certificates will
be generated automatically, if none are supplied by the user. Footprint
increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb
- Add lseek() polyfills for ZIP executable
- Automatically polyfill /tmp/FOO paths on NT
- Fix readdir() / ftw() / nftw() bugs on Windows
- Introduce -B flag for slower SSL that's stronger
- Remove mbedtls features Cosmopolitan doesn't need
- Have base64 decoder support the uri-safe alternative
- Remove Truncated HMAC because it's forbidden by the IETF
- Add all the mbedtls test suites and make them go 3x faster
- Support opendir() / readdir() / closedir() on ZIP executable
- Use Everest for ECDHE-ECDSA because it's so good it's so good
- Add tinier implementation of sha1 since it's not worth the rom
- Add chi-square monte-carlo mean correlation tests for getrandom()
- Source entropy on Windows from the proper interface everyone uses
We're continuing to outperform NGINX and other servers on raw message
throughput. Using SSL means that instead of 1,000,000 qps you can get
around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL
handshakes, since redbean can do 2,627 per second and NGINX does 4.3k
Right now, the SSL UX story works best if you give your redbean a key
signing key since that can be easily generated by openssl using a one
liner then redbean will do all the things that are impossibly hard to
do like signing ecdsa and rsa certificates that'll work in chrome. We
should integrate the let's encrypt acme protocol in the future.
Live Demo: https://redbean.justine.lol/
Root Cert: https://redbean.justine.lol/redbean1.crt
This change configures Mbed TLS to support the fewest number of things
possible required to run an HTTPS server that caters to the sweet spot
of being legacy enough to support the vast majority of user agents but
modern enough that Chrome and Firefox remain happy. That should entail
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA
Even though other suites still get included so what usually happens in
practice is ECDHE-RSA-AES256-GCM-SHA384 under TLS 1.2 will be selected
and the binary footprint is reasonable, and should cost us about 200kb
- SIOCGIFCONFIG: reads and enumerate all the network interfaces
- SIOCGIFADDR: reads network address for a given interface
- SIOCGIFFLAGS: reads network flags for a given interface
- SIOCGIFNETMASK: reads network netmask for a given interface
- SIOCGIFBRDADDR: reads network broadcast address for a given interface
- SIOCGIFDSTADDR: reads peer destination address for a given
interface (not supported for Windows)
This change defines Linux ABI structs for the above interfaces and adds
polyfills to ensure they behave consistently on XNU and Windows.
Added necessary constants (DNS_TYPE_PTR, NI_NUMERICHOST etc.).
Implementation of getnameinfo is similar to getaddrinfo, with internal
functions:
* ResolveDnsReverse: performs rDNS query and parses the PTR record
* ResolveHostsReverse: reads /etc/hosts to map hostname to
address
Earlier, the HOSTS.txt would only need to be sorted at loading time,
because the only kind of lookup was name -> address. Now since address
-> name lookups are also possible, so the HostsTxt struct, the sorting
method (and the related tests) was changed to reflect this.
redbean improvements:
- Explicitly disable corking
- Simulate Python regex API for Lua
- Send warmup requests in main process on startup
- Add Class-A granular IPv4 network classification
- Add /statusz page so you can monitor your redbean's health
- Fix regressions on OpenBSD/NetBSD caused by recent changes
- Plug Authorization header into Lua GetUser and GetPass APIs
- Recognize X-Forwarded-{For,Host} from local reverse proxies
- Add many additional functions to redbean Lua server page API
- Report resource usage of child processes on `/` listing page
- Introduce `-a` flag for logging child process resource usage
- Introduce `-t MILLIS` flag and `ProgramTimeout(ms)` init API
- Introduce `-H "Header: value"` flag and `ProgramHeader(k,v)` API
Cosmopolitan Libc improvements:
- Make strerror() simpler
- Make inet_pton() not depend on sscanf()
- Fix OpenExecutable() which broke .data section earlier
- Fix stdio in cases where it overflows kernel tty buffer
- Fix bugs in crash reporting w/o .com.dbg binary present
- Add polyfills for SO_LINGER, SO_RCVTIMEO, and SO_SNDTIMEO
- Polyfill TCP_CORK on BSD and XNU using TCP_NOPUSH magnums
New netcat clone in examples/nc.c:
While testing some of the failure conditions for redbean, I noticed that
BusyBox's `nc` command is pretty busted, if you use it as an interactive
tool, rather than having it be part of a pipeline. Unfortunately this'll
only work on UNIX since Windows doesn't let us poll on stdio and sockets
at the same time because I don't think they want tools like this running
on their platform. So if you want forbidden fruit, it's here so enjoy it
A new rollup tool now exists for flattening out the headers in a way
that works better for our purposes than cpp. A lot of the API clutter
has been removed. APIs that aren't a sure thing in terms of general
recommendation are now marked internal.
There's now a smoke test for the amalgamation archive and gigantic
header file. So we can now guarantee you can use this project on the
easiest difficulty setting without the gigantic repository.
A website is being created, which is currently a work in progress:
https://justine.storage.googleapis.com/cosmopolitan/index.html
- Emulator can now test the αcτµαlly pδrταblε εxεcµταblε bootloader
- Whipped up a webserver named redbean. It services 150k requests per
second on a single core. Bundling assets inside zip enables extremely
fast serving for two reasons. The first is that zip central directory
lookups go faster than stat() system calls. The second is that both
zip and gzip content-encoding use DEFLATE, therefore, compressed
responses can be served via the sendfile() system call which does an
in-kernel copy directly from the zip executable structure. Also note
that red bean zip executables can be deployed easily to all platforms,
since these native executables work on Linux, Mac, BSD, and Windows.
- Address sanitizer now works very well
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.
https://justine.storage.googleapis.com/emulator625.mp4