Actually Portable Python is now outperforming the Python binaries
that come bundled with Linux distros, at things like HTTP serving.
You can now have a fully featured Python install in just one .com
file that runs on six operating systems and is about 10mb in size.
With tuning, the tiniest is ~1mb. We've got most of the libraries
working, including pysqlite, and the repl now feels very pleasant.
The things you can't do quite yet are: threads and shared objects
but that can happen in the future, if the community falls in love
with this project and wants to see it developed further. Changes:
- Add siginterrupt()
- Add sqlite3 to Python
- Add issymlink() helper
- Make GetZipCdir() faster
- Add tgamma() and finite()
- Add legacy function lutimes()
- Add readlink() and realpath()
- Use heap allocations when appropriate
- Reorganize Python into two-stage build
- Save Lua / Python shell history to dotfile
- Integrate Python Lib embedding into linkage
- Make isregularfile() and isdirectory() go faster
- Make Python shell auto-completion work perfectly
- Make crash reports work better if changed directory
- Fix Python+NT open() / access() flag overflow error
- Disable Python tests relating to \N{LONG NAME} syntax
- Have Python REPL copyright() show all notice embeddings
The biggest technical challenge at the moment is working around
when Python tries to be too clever about filenames.
This change gets the Python codebase into a state where it conforms to
the conventions of this codebase. It's now possible to include headers
from Python, without worrying about ordering. Python has traditionally
solved that problem by "diamonding" everything in Python.h, but that's
problematic since it means any change to any Python header invalidates
all the build artifacts. Lastly it makes tooling not work. Since it is
hard to explain to Emacs when I press C-c C-h to add an import line it
shouldn't add the header that actually defines the symbol, and instead
do follow the nonstandard Python convention.
Progress has been made on letting Python load source code from the zip
executable structure via the standard C library APIs. System calss now
recognizes zip!FILENAME alternative URIs as equivalent to zip:FILENAME
since Python uses colon as its delimiter.
Some progress has been made on embedding the notice license terms into
the Python object code. This is easier said than done since Python has
an extremely complicated ownership story.
- Some termios APIs have been added
- Implement rewinddir() dirstream API
- GetCpuCount() API added to Cosmopolitan Libc
- More bugs in Cosmopolitan Libc have been fixed
- zipobj.com now has flags for mangling the path
- Fixed bug a priori with sendfile() on certain BSDs
- Polyfill F_DUPFD and F_DUPFD_CLOEXEC across platforms
- FIOCLEX / FIONCLEX now polyfilled for fast O_CLOEXEC changes
- APE now supports a hybrid solution to no-self-modify for builds
- Many BSD-only magnums added, e.g. O_SEARCH, O_SHLOCK, SF_NODISKIO
Your redbean can now interoperate with clients that require TLS crypto.
This is accomplished using a protocol polyglot that lets us distinguish
between HTTP and HTTPS regardless of the port number. Certificates will
be generated automatically, if none are supplied by the user. Footprint
increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb
- Add lseek() polyfills for ZIP executable
- Automatically polyfill /tmp/FOO paths on NT
- Fix readdir() / ftw() / nftw() bugs on Windows
- Introduce -B flag for slower SSL that's stronger
- Remove mbedtls features Cosmopolitan doesn't need
- Have base64 decoder support the uri-safe alternative
- Remove Truncated HMAC because it's forbidden by the IETF
- Add all the mbedtls test suites and make them go 3x faster
- Support opendir() / readdir() / closedir() on ZIP executable
- Use Everest for ECDHE-ECDSA because it's so good it's so good
- Add tinier implementation of sha1 since it's not worth the rom
- Add chi-square monte-carlo mean correlation tests for getrandom()
- Source entropy on Windows from the proper interface everyone uses
We're continuing to outperform NGINX and other servers on raw message
throughput. Using SSL means that instead of 1,000,000 qps you can get
around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL
handshakes, since redbean can do 2,627 per second and NGINX does 4.3k
Right now, the SSL UX story works best if you give your redbean a key
signing key since that can be easily generated by openssl using a one
liner then redbean will do all the things that are impossibly hard to
do like signing ecdsa and rsa certificates that'll work in chrome. We
should integrate the let's encrypt acme protocol in the future.
Live Demo: https://redbean.justine.lol/
Root Cert: https://redbean.justine.lol/redbean1.crt
- SIOCGIFCONFIG: reads and enumerate all the network interfaces
- SIOCGIFADDR: reads network address for a given interface
- SIOCGIFFLAGS: reads network flags for a given interface
- SIOCGIFNETMASK: reads network netmask for a given interface
- SIOCGIFBRDADDR: reads network broadcast address for a given interface
- SIOCGIFDSTADDR: reads peer destination address for a given
interface (not supported for Windows)
This change defines Linux ABI structs for the above interfaces and adds
polyfills to ensure they behave consistently on XNU and Windows.
You can now build Cosmopolitan with Clang:
make -j8 MODE=llvm
o/llvm/examples/hello.com
The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
For the first time ever, all tests in this codebase now pass, when
run automatically on macos, freebsd, openbsd, rhel5, rhel7, alpine
and windows via the network using the runit and runitd build tools
- Fix vfork exec path etc.
- Add XNU opendir() support
- Add OpenBSD opendir() support
- Add Linux history to syscalls.sh
- Use copy_file_range on FreeBSD 13+
- Fix system calls with 7+ arguments
- Fix Windows with greater than 16 FDs
- Fix RUNIT.COM and RUNITD.COM flakiness
- Fix OpenBSD munmap() when files are mapped
- Fix long double so it's actually long on Windows
- Fix OpenBSD truncate() and ftruncate() thunk typo
- Let Windows fcntl() be used on socket files descriptors
- Fix Windows fstat() which had an accidental printf statement
- Fix RHEL5 CLOCK_MONOTONIC by not aliasing to CLOCK_MONOTONIC_RAW
This is wonderful. I never could have dreamed it would be possible
to get it working so well on so many platforms with tiny binaries.
Fixes#31Fixes#25Fixes#14
This change pays off technical debt with the function -> DLL mappings in
libc/nt/master.sh, which was originally defined based on binary analysis
on Windows 10. It's now been updated so the kernel32/kernelbase/advapi32
imports should be exactly as they are written, on the MSDN documentation
and that wouldn't have been easy without Geoff Chappell's work thank him
https://www.geoffchappell.com/studies/windows/win32/index.htm
A new rollup tool now exists for flattening out the headers in a way
that works better for our purposes than cpp. A lot of the API clutter
has been removed. APIs that aren't a sure thing in terms of general
recommendation are now marked internal.
There's now a smoke test for the amalgamation archive and gigantic
header file. So we can now guarantee you can use this project on the
easiest difficulty setting without the gigantic repository.
A website is being created, which is currently a work in progress:
https://justine.storage.googleapis.com/cosmopolitan/index.html
This is done without using Microsoft's internal APIs. MAP_PRIVATE
mappings are copied to the subprocess via a pipe, since Microsoft
doesn't want us to have proper COW pages. MAP_SHARED mappings are
remapped without needing to do any copying. Global variables need
copying along with the stack and the whole heap of anonymous mem.
This actually improves the reliability of the redbean http server
although one shouldn't expect 10k+ connections on a home computer
that isn't running software built to serve like Linux or FreeBSD.
This change includes many bug fixes, for the NT polyfills, strings,
memory, boot, and math libraries which were discovered by adding more
tools for recreational programming, such as PC emulation. Lemon has also
been vendored because it works so well at parsing languages.
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.
https://justine.storage.googleapis.com/emulator625.mp4