This version has better error messages and safety checks. It supports
loading static position-independent executables. It correctly handles
more kinds of weird ELF program header layouts. A force flag has been
added to avoid system execve(). Finally the longstanding misalignment
with our ELF PT_NOTE section has been addressed.
- This commit mints a new release of APE Loader v1.2 which supports
loading ELF programs with a non-contiguous virtual address layout
even though we've never been able to take advantage of it, due to
how `objcopy -SO binary` fills any holes left by PT_LOAD. This'll
change soon, since we'll have a new way of creating APE binaries.
- The undiamonding trick with our ioctl() implementation is removed
since POSIX has been killing ioctl() for years and they've done a
much better job. One problem it resolves, is that ioctl(FIONREAD)
wasn't working earlier and that caused issues when building Emacs
- Fix unused local variable errors
- Remove yoinks from sigaction() header
- Add nox87 and aarch64 to github actions
- Fix cosmocc -fportcosmo in linking mode
- It's now possible to build `make m=llvm o/llvm/libc`
- compile.com now polyfills -march=native which gcc/clang removed
- Guarantee zero Windows code is linked into non-Windows binaries
- MODE=tinylinux binaries are now back to being as tiny as ~4kb
- Improve the runtime's stack allocation / alignment hack
- GitHub Actions now tests Linux modes for assurance
It turned out that Landlock Make hasn't been applying sandboxing for a
while, due to a mistyped if statement for `$(USE_SYSTEM_TOOLCHAIN)` it
should have had the opposite meaning. Regressions in the build configs
have been fixed. The rmrf() function works better now. The rm.com tool
works according to POSIX with the exception of supporting prompts.
This change figures out some of the build configuration issues we've
been having with libcxx. The c++ span header is added. Per a Discord
discussion we're now turning off `-g` for the default build mode, so
consider using `make MODE=dbg` or `make MODE=zero` for GDB debugging
which works much better than `MODE=` ever has. Note that the default
build mode has always had very good function call / system call logs
plus you can still use ShowCrashReports() for backtrace. Making this
change ensures cosmocc will better conform to FOSS norms. Lastly the
LoadZipArgs() API has been added to cosmopolitan.a and <cosmo.h>.
This change fixes stderr to be unbuffered. Added hardware AES on ARM64
to help safeguard against timing attacks. The curl.com command will be
somewhat more pleasant to use.
After going through the MODE=dbg and MODE=zero build modes, a bunch of
little issues were identified, which have been addressed. Fixing those
issues created even more troubles for the project, because it improved
our ability to detect latent problems which are getting fixed so fast.
The build/bootstrap/ar.com program is now tinier. This change reduces
its size from 140kb to 53kb. Nothing was traded away. Cosmopolitan Ar
performance is now 2x better than llvm-ar largely thanks to using the
copy_file_range() system call. This change homebrews a new allocation
API that addresses the shortcomings of the C standard library design.
Using these new balloc() and reballoc() functions I managed to reduce
memory consumption so much that Cosmpolitan Ar should now use roughly
100x fewer bytes of peak resident memory compared to llvm-ar. Correct
behavior with better compatibility has been assured. Binary output is
now pretty much bit-identical to llvm-ar, as of this change. This can
and should be the living proof we need to show that a better world is
possible for software.
This is important, because the execve() workflow has been upgraded for
launching APE binaries. Programs that call execve() need to be remade,
otherwise they might attempt to use ~/.ape rather than ~/ape-1.1.
This change (1) upgrades to OpenBSD's newer kernel ABIs, and (2)
modifies APE to have a read-only data segment. Doing this required
creating APE Loader v1.1, which is backwards and forwards compatible
with the previous version.
If you've run the following commands in the past to install your APE
Loader systemwide, then you need to run them again. Ad-hoc installations
shouldn't be impacted. It's also recommended that APE binaries be remade
after upgrading, since they embed old versions of the APE Loader.
ape/apeuninstall.sh
ape/apeinstall.sh
This change does more than just fix OpenBSD. The new loader is smarter
and more reliable. We're now able create much tinier ELF and Mach-O data
structures than we could before. Both APE Loader and execvpe() will now
normalize ambiguous argv[0] resolution the same way as the UNIX shell.
Badness with TLS linkage has been solved.
Fixes#826
- More timspec_*() and timeval_*() APIs have been introduced.
- The copyfd() function is now simplified thanks to POSIX rules.
- More Cosmo-specific APIs have been moved behind the COSMO define.
- The setitimer() polyfill for Windows NT is now much higher quality.
- Fixed build error for MODE=aarch64 due to -mstringop-strategy=loop.
- This change introduces `make MODE=nox87 toolchain` which makes it
possible to build programs using your cosmocc toolchain that don't
have legacy fpu instructions. This is useful, for example, if you
want to have a ~22kb tinier blink virtual machine.
This change fixes an issue with the tcflow() magic numbers that was
causing bash to freeze up on Linux. While auditing termios polyfills,
several other issues were identified with XNU/BSD compatibility.
Out of an abundance of caution this change undefines as much surface
area from libc/calls/struct/termios.h as possible, so that autoconf
scripts are less likely to detect non-POSIX teletypewriter APIs that
haven't been polyfilled by Cosmopolitan.
This is a *breaking change* for your static archives in /opt/cosmos if
you use the cosmocc toolchain. That's because this change disables the
ioctl() undiamonding trick for code outside the monorepo, specifically
because it'll lead to brittle ABI breakages like this. If you're using
the cosmocc toolchain, you'll need to rebuild libraries like ncurses,
readline, etc. Yes diamonds cause bloat. To work around that, consider
using tcgetwinsize() instead of ioctl(TIOCGWINSZ) since it'll help you
avoid pulling every single ioctl-related polyfill into the linkage.
The cosmocc script was specifying -DNDEBUG for some reason. It's fixed.
This change takes an entirely new approach to the incremental linking of
pkzip executables. The assets created by zipobj.com are now treated like
debug data. After a .com.dbg is compiled, fixupobj.com should be run, so
it can apply fixups to the offsets and move the zip directory to the end
of the file. Since debug data doesn't get objcopy'd, a new tool has been
introduced called zipcopy.com which should be run after objcopy whenever
a .com file is created. This is all automated by the `cosmocc` toolchain
which is rapidly becoming the new recommended approach.
This change also introduces the new C23 checked arithmetic macros.
This change integrates e58abc1110b335a3341e8ad5821ad8e3880d9bb2 from
https://github.com/ahgamut/musl-cross-make/ which fixes the issues we
were having with our C language extension for symbolic constants. This
change also performs some code cleanup and bug fixes to getaddrinfo().
It's now possible to compile projects like ncurses, readline and python
without needing to patch anything upstream, except maybe a line or two.
Pretty soon it should be possible to build a Linux distro on Cosmo.
- Work towards improving non-optimized build support
- Introduce MODE=zero which is -O0 without ASAN/UBSAN
- Use system GCC when ~/.cosmo.mk has USE_SYSTEM_TOOLCHAIN=1
- Have package.com check .privileged code doesn't call non-privileged
This change implements a new approach to function call logging, that's
based on the GCC flag: -fpatchable-function-entry. Read the commentary
in build/config.mk to learn how it works.
This change progresses our AARCH64 support:
- The AARCH64 build and tests are now passing
- Add 128-bit floating-point support to printf()
- Fix clone() so it initializes cosmo's x28 TLS register
- Fix TLS memory layout issue with aarch64 _Alignas vars
- Revamp microbenchmarking tools so they work on aarch64
- Make some subtle improvements to aarch64 crash reporting
- Make kisdangerous() memory checks more accurate on aarch64
- Remove sys_open() since it's not available on Linux AARCH64
This change makes general improvements to Cosmo and Redbean:
- Introduce GetHostIsa() function in Redbean
- You can now feature check using pledge(0, 0)
- You can now feature check using unveil("",0)
- Refactor some more x86-specific asm comments
- Refactor and write docs for some libm functions
- Make the mmap() API behave more similar to Linux
- Fix WIFSIGNALED() which wrongly returned true for zero
- Rename some obscure cosmo keywords from noFOO to dontFOO
There's a new program named ape/ape-m1.c which will be used to build an
embeddable binary that can load ape and elf executables. The support is
mostly working so far, but still chasing down ABI issues.
- Perform some housekeeping on scalar math function code
- Import ARM's Optimized Routines for SIMD string processing
- Upgrade to latest Chromium zlib and enable more SIMD optimizations
- Introduce epoll_pwait()
- Rewrite -ftrapv and ffs() libraries in C code
- Use more FreeBSD code in math function library
- Get significantly more tests passing on qemu-aarch64
- Fix many Musl long double functions that were broken on AARCH64
- Utilities like pledge.com now build
- kprintf() will no longer balk at 48-bit addresses
- There's a new aarch64-dbg build mode that should work
- gc() and defer() are mostly pacified; avoid using them on aarch64
- THIRD_PART_STB now has Arm Neon intrinsics for fast image handling
- clock_nanosleep() is now much faster on OpenBSD and NetBSD
- Thread joining is now much faster on NetBSD
- FreeBSD timestamps are now more accurate
- Thread spawning now goes faster on XNU
- Clean up the clone() code