Recursive mutexes now go as fast as normal mutexes. The tradeoff is they
are no longer safe to use in signal handlers. However you can still have
signal safe mutexes if you set your mutex to both recursive and pshared.
You can also make functions that use recursive mutexes signal safe using
sigprocmask to ensure recursion doesn't happen due to any signal handler
The impact of this change is that, on Windows, many functions which edit
the file descriptor table rely on recursive mutexes, e.g. open(). If you
develop your app so it uses pread() and pwrite() then your app should go
very fast when performing a heavily multithreaded and contended workload
For example, when scaling to 40+ cores, *NSYNC mutexes can go as much as
1000x faster (in CPU time) than the naive recursive lock implementation.
Now recursive will use *NSYNC under the hood when it's possible to do so
While we have always licked glibc and musl libc on gnu/systemd sadly the
Apple Libc implementation of pthread_mutex_t is better than ours. It may
be due to how the XNU kernel and M2 microprocessor are in league when it
comes to scheduling processes and the NSYNC behavior is being penalized.
We can solve this by leaning more heavily on ulock using Drepper's algo.
It's kind of ironic that Linux's official mutexes work terribly on Linux
but almost as good as Apple Libc if used on MacOS.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
This change improves copy_file_range(), sendfile(), splice(), openpty(),
closefrom(), close_range(), fadvise() and posix_fadvise() in addition to
writing tests that confirm things like errno and seeking behavior across
platforms. We now less aggressively polyfill behavior with some of these
functions when the platform support isn't available. Please see:
https://justine.lol/cosmopolitan/functions.html