It hasn't been helpful enough to be justify the maintenance burden. What
actually does help is mprotect(), kprintf(), --ftrace and --strace which
can always be counted upon to work correctly. We aren't losing much with
this change. Support for ASAN on AARCH64 was never implemented. Applying
ASAN to the core libc runtimes was disabled many months ago. If there is
some way to have an ASAN runtime for user programs that is less invasive
we can potentially consider reintroducing support. But now is premature.
If pthread_create() is linked into the binary, then the cosmo runtime
will create an independent dlmalloc arena for each core. Whenever the
malloc() function is used it will index `g_heaps[sched_getcpu() / 2]`
to find the arena with the greatest hyperthread / numa locality. This
may be configured via an environment variable. For example if you say
`export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways.
Your process may be configured to have anywhere between 1 - 128 heaps
We need this revision because it makes multithreaded C++ applications
faster. For example, an HTTP server I'm working on that makes extreme
use of the STL went from 16k to 2000k requests per second, after this
change was made. To understand why, try out the malloc_test benchmark
which calls malloc() + realloc() in a loop across many threads, which
sees a a 250x improvement in process clock time and 200x on wall time
The tradeoff is this adds ~25ns of latency to individual malloc calls
compared to MODE=tiny, once the cosmo runtime has transitioned into a
fully multi-threaded state. If you don't need malloc() to be scalable
then cosmo provides many options for you. For starters the heap count
variable above can be set to put the process back in single heap mode
plus you can go even faster still, if you include tinymalloc.inc like
many of the programs in tool/build/.. are already doing since that'll
shave tens of kb off your binary footprint too. Theres also MODE=tiny
which is configured to use just 1 plain old dlmalloc arena by default
Another tradeoff is we need more memory now (except in MODE=tiny), to
track the provenance of memory allocation. This is so allocations can
be freely shared across threads, and because OSes can reschedule code
to different CPUs at any time.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
For the first time ever, all tests in this codebase now pass, when
run automatically on macos, freebsd, openbsd, rhel5, rhel7, alpine
and windows via the network using the runit and runitd build tools
- Fix vfork exec path etc.
- Add XNU opendir() support
- Add OpenBSD opendir() support
- Add Linux history to syscalls.sh
- Use copy_file_range on FreeBSD 13+
- Fix system calls with 7+ arguments
- Fix Windows with greater than 16 FDs
- Fix RUNIT.COM and RUNITD.COM flakiness
- Fix OpenBSD munmap() when files are mapped
- Fix long double so it's actually long on Windows
- Fix OpenBSD truncate() and ftruncate() thunk typo
- Let Windows fcntl() be used on socket files descriptors
- Fix Windows fstat() which had an accidental printf statement
- Fix RHEL5 CLOCK_MONOTONIC by not aliasing to CLOCK_MONOTONIC_RAW
This is wonderful. I never could have dreamed it would be possible
to get it working so well on so many platforms with tiny binaries.
Fixes#31Fixes#25Fixes#14
A new rollup tool now exists for flattening out the headers in a way
that works better for our purposes than cpp. A lot of the API clutter
has been removed. APIs that aren't a sure thing in terms of general
recommendation are now marked internal.
There's now a smoke test for the amalgamation archive and gigantic
header file. So we can now guarantee you can use this project on the
easiest difficulty setting without the gigantic repository.
A website is being created, which is currently a work in progress:
https://justine.storage.googleapis.com/cosmopolitan/index.html