Commit graph

11 commits

Author SHA1 Message Date
Justine Tunney
c8e10eef30
Make bulk_free() go faster 2024-12-23 20:31:57 -08:00
Justine Tunney
610c951f71
Fix the build 2024-08-26 16:44:05 -07:00
Justine Tunney
1671283f1a
Avoid clobbering errno 2024-08-15 23:54:14 -07:00
Justine Tunney
0a79c6961f
Make malloc scalable on all platforms
It turns out sched_getcpu() didn't work on many platforms. So the system
call now has tests and is well documented. We now employ new workarounds
on platforms where it isn't supported in our malloc() implementation. It
was previously the case that malloc() was only scalable on Linux/Windows
for x86-64. Now the other platforms are scalable too.
2024-08-15 23:32:53 -07:00
Justine Tunney
31194165d2
Remove .internal from more header filenames 2024-08-04 12:52:25 -07:00
Justine Tunney
86d884cce2
Get rid of .internal.h convention in LIBC_INTRIN 2024-07-19 19:38:00 -07:00
Justine Tunney
c4c812c154
Introduce ctl::set and ctl::map
We now have a C++ red-black tree implementation that implements standard
template library compatible APIs while compiling 10x faster than libcxx.
It's not as beautiful as the red-black tree implementation in Plinko but
this will get the job done and the test proves it upholds all invariants

This change also restores CheckForMemoryLeaks() support and fixes a real
actual bug I discovered with Doug Lea's dlmalloc_inspect_all() function.
2024-06-23 22:27:11 -07:00
Justine Tunney
388e236360
Revert misguided dlmalloc optimization 2024-06-22 09:55:02 -07:00
Justine Tunney
6ffed14b9c
Rewrite memory manager
Actually Portable Executable now supports Android. Cosmo's old mmap code
required a 47 bit address space. The new implementation is very agnostic
and supports both smaller address spaces (e.g. embedded) and even modern
56-bit PML5T paging for x86 which finally came true on Zen4 Threadripper

Cosmopolitan no longer requires UNIX systems to observe the Windows 64kb
granularity; i.e. sysconf(_SC_PAGE_SIZE) will now report the host native
page size. This fixes a longstanding POSIX conformance issue, concerning
file mappings that overlap the end of file. Other aspects of conformance
have been improved too, such as the subtleties of address assignment and
and the various subtleties surrounding MAP_FIXED and MAP_FIXED_NOREPLACE

On Windows, mappings larger than 100 megabytes won't be broken down into
thousands of independent 64kb mappings. Support for MAP_STACK is removed
by this change; please use NewCosmoStack() instead.

Stack overflow avoidance is now being implemented using the POSIX thread
APIs. Please use GetStackBottom() and GetStackAddr(), instead of the old
error-prone GetStackAddr() and HaveStackMemory() APIs which are removed.
2024-06-22 05:45:11 -07:00
Justine Tunney
cc2c1893c5
Fix some nits 2024-06-05 04:05:49 -07:00
Justine Tunney
3609f65de3
Make malloc() go 200x faster
If pthread_create() is linked into the binary, then the cosmo runtime
will create an independent dlmalloc arena for each core. Whenever the
malloc() function is used it will index `g_heaps[sched_getcpu() / 2]`
to find the arena with the greatest hyperthread / numa locality. This
may be configured via an environment variable. For example if you say
`export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways.
Your process may be configured to have anywhere between 1 - 128 heaps

We need this revision because it makes multithreaded C++ applications
faster. For example, an HTTP server I'm working on that makes extreme
use of the STL went from 16k to 2000k requests per second, after this
change was made. To understand why, try out the malloc_test benchmark
which calls malloc() + realloc() in a loop across many threads, which
sees a a 250x improvement in process clock time and 200x on wall time

The tradeoff is this adds ~25ns of latency to individual malloc calls
compared to MODE=tiny, once the cosmo runtime has transitioned into a
fully multi-threaded state. If you don't need malloc() to be scalable
then cosmo provides many options for you. For starters the heap count
variable above can be set to put the process back in single heap mode
plus you can go even faster still, if you include tinymalloc.inc like
many of the programs in tool/build/.. are already doing since that'll
shave tens of kb off your binary footprint too. Theres also MODE=tiny
which is configured to use just 1 plain old dlmalloc arena by default

Another tradeoff is we need more memory now (except in MODE=tiny), to
track the provenance of memory allocation. This is so allocations can
be freely shared across threads, and because OSes can reschedule code
to different CPUs at any time.
2024-06-05 02:02:14 -07:00