This way complex runtime features (e.g. ftrace, symbol tables) can
always yoink zipos support. This is important now that apelink.com
automates embedding symbol tables for multiple cpus.
This change ports APE Loader to Linux AARCH64, so that Raspberry Pi
users can run programs like redbean, without the executable needing
to modify itself. Progress has also slipped into this change on the
issue of making progress better conforming to user expectations and
industry standards regarding which symbols we're allowed to declare
This change also incorporates more bug fixes and improvements to a wide
variety of small things. For example this fixes#860 so Windows console
doesn't get corrupted after exit. An system stack memory map issue with
aarch64 has been fixed. We no longer use O_NONBLOCK on AF_UNIX sockets.
Crash reports on Arm64 will now demangle C++ symbols, even when c++filt
isn't available. Most importantly the Apple M1 version of APE Loader is
brought up to date by this change. A prebuilt unsigned binary for it is
being included in build/bootstrap/. One more thing: retrieving the term
dimensions under --strace was causing the stack to become corrupted and
now that's been solved too. PSS: We're now including an ELF PT_NOTE for
APE in the binaries we build, that has the APE Loader version.
- Fix unused local variable errors
- Remove yoinks from sigaction() header
- Add nox87 and aarch64 to github actions
- Fix cosmocc -fportcosmo in linking mode
- It's now possible to build `make m=llvm o/llvm/libc`
- Fix handling of precision in hex float formatting
- Enhance the cocmd interpreter for system() and popen()
- Manually ran the Lua unit tests, which are now passing
- Let stdio i/o operations happen when file is in error state
- We're now saving and restoring xmm in ftrace out of paranoia
The *NSYNC linked list API is good enough that it deserves to be part of
the C libray, so this change writes an improved version of it which uses
that offsetof() trick from the Linux Kernel. We vendor all of the *NSYNC
tests in third_party which helped confirm the needed refactoring is safe
This change also deletes more old code that didn't pan out. My goal here
is to work towards a vision where the Cosmopolitan core libraries become
less experimental and more focused on curation. This better reflects the
current level of quality we've managed to achieve.
This change introduces support for Linux-style uc_context manipulation
that's fast and works well on all supported OSes and architectures. It
also integrates with the Cosmpolitan runtime which can show backtraces
comprised of multiple stacks and fibers. See the test and example code
for further details. This will be used by Mold once it's been vendored
- Found some bugs in LLVM compiler-rt library
- The useless LIBC_STUBS package is now deleted
- Improve the overflow checking story even further
- Get chibicc tests working in MODE=dbg mode again
- The libc/isystem/ headers now have correctly named guards
This change takes an entirely new approach to the incremental linking of
pkzip executables. The assets created by zipobj.com are now treated like
debug data. After a .com.dbg is compiled, fixupobj.com should be run, so
it can apply fixups to the offsets and move the zip directory to the end
of the file. Since debug data doesn't get objcopy'd, a new tool has been
introduced called zipcopy.com which should be run after objcopy whenever
a .com file is created. This is all automated by the `cosmocc` toolchain
which is rapidly becoming the new recommended approach.
This change also introduces the new C23 checked arithmetic macros.
This change improves the way internal APIs are being hidden behind the
`COSMO` define. The cosmo.h header will take care of defining that, so
that a separate define statement isn't needed. This change also does a
lot more to define which APIs are standard, and which belong to Cosmo.
This change integrates e58abc1110b335a3341e8ad5821ad8e3880d9bb2 from
https://github.com/ahgamut/musl-cross-make/ which fixes the issues we
were having with our C language extension for symbolic constants. This
change also performs some code cleanup and bug fixes to getaddrinfo().
It's now possible to compile projects like ncurses, readline and python
without needing to patch anything upstream, except maybe a line or two.
Pretty soon it should be possible to build a Linux distro on Cosmo.
In order to improve our chances of success building other open source
projects we shouldn't define APIs that'll lead any ./configure script
astray. For example:
- brk() and sbrk() can break mac/windows support
- syscall() is a superb way to break portability
- arch_prctl() is the greatest of all horror shows
- Work towards improving non-optimized build support
- Introduce MODE=zero which is -O0 without ASAN/UBSAN
- Use system GCC when ~/.cosmo.mk has USE_SYSTEM_TOOLCHAIN=1
- Have package.com check .privileged code doesn't call non-privileged
Garbage collection will now happen on arm64 when a function returns,
rather than kicking the can down the road to when the process exits.
This change also does some code cleanup and incorporates suggestions
Apparently IANA has abolished the WHOIS protocol and no longer lists it
as a service. Therefore distros which naively create /etc/services from
IANA's braindead recommendation will inadvertently break any tools that
rely on /etc/services to determine this well-known Internet port.
This change implements a new approach to function call logging, that's
based on the GCC flag: -fpatchable-function-entry. Read the commentary
in build/config.mk to learn how it works.
- Now using 10x better GCD semaphores
- We now generate Linux-like thread ids
- We now use fast system clock / sleep libraries
- The APE M1 loader now generates Linux-like stacks
llama.com can now load weights that use the new file format which was
introduced a few weeks ago. Note that, unlike llama.cpp, we will keep
support for old file formats in our tool so you don't need to convert
your weights when the upstream project makes breaking changes. Please
note that using ggjt v3 does make avx2 inference go 5% faster for me.
This change progresses our AARCH64 support:
- The AARCH64 build and tests are now passing
- Add 128-bit floating-point support to printf()
- Fix clone() so it initializes cosmo's x28 TLS register
- Fix TLS memory layout issue with aarch64 _Alignas vars
- Revamp microbenchmarking tools so they work on aarch64
- Make some subtle improvements to aarch64 crash reporting
- Make kisdangerous() memory checks more accurate on aarch64
- Remove sys_open() since it's not available on Linux AARCH64
This change makes general improvements to Cosmo and Redbean:
- Introduce GetHostIsa() function in Redbean
- You can now feature check using pledge(0, 0)
- You can now feature check using unveil("",0)
- Refactor some more x86-specific asm comments
- Refactor and write docs for some libm functions
- Make the mmap() API behave more similar to Linux
- Fix WIFSIGNALED() which wrongly returned true for zero
- Rename some obscure cosmo keywords from noFOO to dontFOO
There's a new program named ape/ape-m1.c which will be used to build an
embeddable binary that can load ape and elf executables. The support is
mostly working so far, but still chasing down ABI issues.
- Perform some housekeeping on scalar math function code
- Import ARM's Optimized Routines for SIMD string processing
- Upgrade to latest Chromium zlib and enable more SIMD optimizations
- Utilities like pledge.com now build
- kprintf() will no longer balk at 48-bit addresses
- There's a new aarch64-dbg build mode that should work
- gc() and defer() are mostly pacified; avoid using them on aarch64
- THIRD_PART_STB now has Arm Neon intrinsics for fast image handling
It's now possible to run commands like:
make -j8 m=aarch64 o/aarch64/test/libc/str
Which will cross-compile and run the test suites in a qemu-aarch64
binary that's vendored in the third_party/qemu/ folder within your
x86_64 build environment.
The ShowCrashReports() feature for aarch64 should work even better than
the x86 crash reports. Thanks to the benefit of hindsight these reports
should be rock solid reliable and beautiful to read.
This change also improves the syscall polyfills for aarch64. Some of the
sys_foo() functions have been removed, usually because they're legacy or
downright footguns not worth building.