Right now, cosmopolitan uses Linux Landlock ABI version 2 on Linux,
meaning that the polyfill for unveil() cannot restrict operations such
as truncate() (a limitation of Landlock's ABI from then). This means
that to restrict truncation operations Cosmopolitan instead has to ban
the syscall through a SECCOMP BPF filter, meaning that completely
legitimate truncate() calls are blocked
However, the newest version of the Landlock ABI (version 3) introduced
in Linux 6.2, released in February 2023, implements support for controlling truncation
operations. As such, the previous SECCOMP BPF truncate() filtering is
no longer needed when the new ABI is available
This patch implements unveil truncate support for Linux Landlock ABI
version 3
The rpath pledge as currently implemented in cosmopolitan does not
allow for usage of the old getdents syscall (0x4e), which is different
from the newer getdents syscall (0xd9) solely in that it does not
support 64-bit filesystems.
This means that, for example, old statically linked binaries cannot
use `readdir` and other such functions which use this syscall instead
of the more modern one, even though there is no threat in allowing
that syscall alongside the more modern one (except that the binary may
have issues with 64-bit filesystems, but that's a separate problem).
This patch fixes this.
The C standard states that, in the context of an x conversion
specifier given to scanf:
> Matches an optionally signed hexadecimal integer, whose format is
> the same as expected for the subject sequence of the strtoul
> function with the value 16 for the base argument.
- C standard, 7.23.6.2.11. The fscanf function
Cosmopolitan fails to do this, as 0 should be parsed as a 0 by such an
invocation of strtoul. Instead, cosmopolitan errors out as though such
input is invalid, which is wrong.
This means that a program such as this:
#include <stdio.h>
#undef NDEBUG
#include <assert.h>
int main()
{
int v = 0;
assert(sscanf("0", "%x", &v) == 1);
}
will not run correctly on cosmpolitan, instead failing the assertion.
This patch fixes this, along with the associated GitHub issue,
https://github.com/jart/cosmopolitan/issues/778
The C standard, when defining field width and precision, never gives
any limit on the values used for them (except, I believe, that they
fit within an int). In other words, if the user gives a field width of
32145 and a precision of 9218, the implementation has to handle these
values correctly. However, when such kinds of high numbers are used
with integer conversions, cosmopolitan is limited by an internal
buffer size of 144, which means precisions and field widths have to
fit within this, which violates the standard.
This means that for example, the following program:
#include <stdio.h>
#include <string.h>
int main()
{
char buf2[512] = {};
int i = snprintf(buf2, sizeof(buf2), "%.9999u", 10);
printf("%d %zu\n", i, strlen(buf2));
}
would, instead of printing "9999 511" (the correct output), instead
print "144 144" under cosmopolitan.
This patch fixes this.
The C standard states:
> The fprintf function returns the number of characters transmitted,
> or a negative value if an output or encoding error occurred or if
> the implementation does not support a specified width length
> modifier.
- C Standard, 7.23.6.1.15. The fprintf function
However, cosmopolitan fails to return a negative value in the case of
an output error, meaning that a program such as:
#include <stdio.h>
int main()
{
FILE *fp = fopen("/dev/full", "w");
setbuf(fp, NULL);
printf("fprintf: %d\n", fprintf(fp, "test\n"));
printf("fflush: %d\n", fflush(fp));
}
will, under cosmopolitan, print that no error occured in either of the
calls to fprintf and fflush.
This patch fixes this, along with the associated GitHub issue,
https://github.com/jart/cosmopolitan/issues/784
_PFLINK is supposed to automatically pull in required functions for
specific conversion specifiers. However, it fails to do so for the F,
G and E conversion specifiers.
This means that, for example, the following program:
#include <stdio.h>
int main()
{
printf("%F %G %E\n", .0, .0, .0);
}
fails to run correctly, printing "? ? ?" instead of
"0.000000 0 0.000000E+00".
This patch fixes this.
The C standard states:
> Unless explicitly stated otherwise, the functions described in this
> subclause order two wide characters the same way as two integers of
> the underlying integer type designated by wchar_t.
>
> [...]
>
> The wcscmp function returns an integer greater than, equal to, or
> less than zero, accordingly as the wide string pointed to by s1 is
> greater than, equal to, or less than the wide string pointed to by
> s2.
>
> [...]
>
> The wcsncmp function returns an integer greater than, equal to, or
> less than zero, accordingly as the possibly null-terminated array
> pointed to by s1 is greater than, equal to, or less than the
> possibly null-terminated array pointed to by s2.
- C Standard, 7.31.4.4. Wide string comparison functions
Cosmopolitan fails to obey this in cases where the difference between
two wide characters is larger than WCHAR_MAX.
This means that, for example, the following program:
#include <stdio.h>
#include <wchar.h>
#include <limits.h>
int main()
{
wchar_t str1[] = { WCHAR_MIN, L'\0' };
wchar_t str2[] = { WCHAR_MAX, L'\0' };
printf("%d\n", wcscmp(str1, str2));
printf("%d\n", wcsncmp(str1, str2, 2));
}
will print `1` twice, instead of the negative numbers mandated by the
standard (as WCHAR_MIN is less than WCHAR_MAX)
This patch fixes this, along with the associated Github issue,
https://github.com/jart/cosmopolitan/issues/783
The C standard states that, within the context of a printf-family
function, when specifying the precision of a conversion specification:
> A negative precision argument is taken as if the precision were
> omitted.
- Quoth the C Standard, 7.23.6.1. The fprintf function
Cosmopolitan instead treated negative precision arguments as
though they had a value of 0, which was non-conforming. This
change fixes that. Another issue we found relates to:
> For o conversion, it increases the precision, if and only if
> necessary, to force the first digit of the result to be a zero (if
> the value and precision are both 0, a single 0 is printed).
- Quoth the C standard, 7.23.6.1.6. The fprintf function
When printing numbers in their alternative form, with a precision and
with a conversion specifier of o (octal), Cosmopolitan wasn't following
the standard in two ways:
1. When printing a value with a precision that results in 0-padding,
cosmopolitan would still add an extra 0 even though this should be
done "if and only if necessary"
2. When printing a value of 0 with a precision of 0, nothing is
printed, even though the standard specifically states that a single
0 is printed in this case
This change fixes those issues too. Furthermore, regression tests have
been introduced to ensure Cosmopolitan continues to be conformant
going forward.
Fixes#774Fixes#782Fixes#789
Cosmopolitan now conforms to the C Standard 7.8.1 specification
of the PRI and SCN macros, because this change fixes a bug where
the FAST16 ones were incorrectly using the %hd specifier.
The standard states that, when the # flag is used:
> The result is converted to an "alternative form". [...] For x (or X)
conversion, a nonzero result has 0x (or 0X) prefixed to it.
- C standard, 7.23.6.1. The fprintf function
cosmopolitan fails to use the correct alternative form (0X) when the X
conversion specifier is used, instead using 0x, which is not
capitalized.
This patch fixes this, along with the several tests that test for the
wrong behavior.
We were checking for anonymous mappings earlier on Windows by seeing if
the file descriptor argument to mmap() was supplied as -1. This was not
correct. The proper thing to do is check `flags & MAP_ANONYMOUS`.
The C standard states, for conversions using the d, i, b, B, o, u, x or X conversion specifiers:
> The precision specifies the minimum number of digits to appear; if
> the value being converted can be represented in fewer digits, it is
> expanded with leading zeros.
- C standard, 7.23.6.1. The fprintf function
However, cosmopolitan currently suppresses the addition of leading
zeros when the minus flag is set. This is not reflected by anything
within the C standard, meaning that behavior is incorrect.
This patch fixes this.
* Implement S conversion specifier for printf-related functions
POSIX specifies that a conversion specifier of S must be interpreted
the same way as %ls. This patch implements this.
* clang-format
---------
Co-authored-by: Gavin Hayes <gavin@computoid.com>
* Update redbean SQLite config to handle more options
This requires moving sqlite3_initialize call to open, as configuration
should be allowed before initialization is done. This call is effective
only for the first time and then no-op after that.
* Fix redbean SQLite for closing db with already finalized statements
There is a loop in cleanupdb that finalizes all vms that are associated
with that db when it's being closed. Under some circumstances (detailed
below) that loop may contain references pointing to already collected
objects, thus leading to SIGSEGV when those references are used.
This may happen with the following sequence of events ("VM" is the name
used in lsqlite and describes the same thing as "statement"):
1. A finalized statement is created (for example, by preparing an empty
string or a string with no statement that is still grammatically valid).
2. This statement goes out of scope before the DB object it's associated
with does and is garbage collected.
3. When it's garbage collected, dbvm_gc method is called, which checks
for svm->vm being not NULL.
4. Since the VM is already finalized, cleanupvm method is not called,
so the VM reference is not removed from the table of VMs tracked for
that DB.
5. When the DB is finally closed or garbage collected, all the VMs
associated with it are accessed to be finalized, including the ones that
have been garbage collected and have invalid references (thus leading
to a memory access error).
Here is an example of a stacktrace from the resulting SIGSEGV:
70000003de20 5df71a getgeneric+26
70000003fac0 5dfc7f luaH_get+111
70000003faf0 5e06c8 luaH_set+40
70000003fb20 5c5bd7 aux_rawset+55
70000003fb50 5c70cb lua_rawset+27
70000003fb60 4fa8e7 cleanupvm+71
70000003fb80 4fa988 cleanupdb+88
70000003fbc0 4fe899 db_gc+41
One way to fix this is to use userdata references (which anchor their
targets) instead of lightuserdata references (which do not), but this
would prevent the targets (VMs) from being garbage collected until the
DB itself is garbage collected, so this needs to be combined with
weakening the keys in the DB table. The code in cleanupdb to remove the
VM references is no longer needed, as this is handled by having weak keys.
The patch also switches to using close_v2, as it is intended for use
with garbage collected languages where the order in which destructors
are called is arbitrary, as is the case here.
* Remove GC collection from redbean SQLite session
The behavior of sqlite3session_delete is undefined after the DB
connection is closed, so we need to avoid calling it from gc handler.
This is an official tagged version. The 1.1 version used earlier was
informal. Formal versions will always have major.minor.patch going
forward. See https://github.com/jart/blink/tags 1.0.0 coming soon.