Now that our socket system call polyfills are good enough to support
Musl's DNS library we should be using that rather than the barebones
domain name system implementation we rolled on our own. There's many
benefits to making this change. So many, that I myself wouldn't feel
qualified to enumerate them all. The Musl DNS code had to be changed
in order to support Windows of course, which looks very solid so far
Somehow or another, I previously had missed `BUILD.mk` files.
In the process I found a few straggler cases where the modeline was
different from the file, including one very involved manual fix where a
file had been treated like it was ts=2 and ts=8 on separate occasions.
The commit history in the PR shows the gory details; the BUILD.mk was
automated, everything else was mostly manual.
The ape loader now passes the program executable name directly as a
register. `x2` is used on aarch64, `%rdx` on x86_64. This is passed
as the third argument to `cosmo()` (M1) or `Launch` (non-M1) and is
assigned to the global `__program_executable_name`.
`GetProgramExecutableName` now returns this global's value, setting
it if it is initially null. `InitProgramExecutableName` first tries
exotic, secure methods: `KERN_PROC_PATHNAME` on FreeBSD/NetBSD, and
`/proc` on Linux. If those produce a reasonable response (i.e., not
`"/usr/bin/ape"`, which happens with the loader before this change),
that is used. Otherwise, if `issetugid()`, the empty string is used.
Otherwise, the old argv/envp parsing code is run.
The value returned from the loader is always the full absolute path
of the binary to be executed, having passed through `realpath`. For
the non-M1 loader, this necessitated writing `RealPath`, which uses
`readlinkat` of `"/proc/self/fd/[progfd]"` on Linux, `F_GETPATH` on
Xnu, and the `__realpath` syscall on OpenBSD. On FreeBSD/NetBSD, it
punts to `GetProgramExecutableName`, which is secure on those OSes.
With the loader, all platforms now have a secure program executable
name. With no loader or an old loader, everything still works as it
did, but setuid/setgid is not supported if the insecure pathfinding
code would have been needed.
Fixes#991.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
* Introduce env.com
Handy tool for debugging environment issues.
* Inject path as COSMOPOLITAN_PROGRAM_EXECUTABLE
`argv[0]` was previously being used as a communication channel between
the loader and the binary, giving the binary its full path for use e.g.
in `GetProgramExecutableName`. But `argv[0]` is not a good channel for
this; much of what made 2a3813c6 so gross is due to that.
This change fixes the issue by preserving `argv[0]` and establishing a
new communication channel: `COSMOPOLITAN_PROGRAM_EXECUTABLE`.
The M1 loader will always set this as the first variable. Linux should
soon follow. On the other side, `GetProgramExecutableName` checks that
variable first. If it sees it, it trusts it as-is.
A lot of the churn in `ape/ape-m1.c` in this change is actually backing
out hacks introduced in 2a3813c6; the best comparison is:
git diff 2a3813c6^..
- Use good ELF technique in cosmo_dlopen()
- Make strerror() conform more to other libc impls
- Introduce __clear_cache() and use it in cosmo_dlopen()
- Remove libc/fmt/fmt.h header (trying to kill off LIBC_FMT)
wait4() is now solid enough to run `make -j100` on Windows. You can now
use MSG_DONTWAIT on Windows. There was a handle leak in accept() that's
been fixed. Our WIN32 overlapped i/o code has been simplified. Priority
class now inherits into subprocesses, so the verynice command will work
and the signal mask will now be inherited by execve() and posix_spawn()
Every program built using Cosmopolitan is statically-linked. However
there are some cases, e.g. GUIs and video drivers, where linking the
host platform libraries is desirable. So what we do in such cases is
launch a stub executable using the host platform's libc, and longjmp
back into this executable. The stub executable passes back to us the
platform-specific dlopen() implementation, which we shall then wrap.
Here's the list of platforms that are supported so far:
- x86-64 Linux w/ Glibc
- x86-64 Linux w/ Musl Libc
- x86-64 FreeBSD
- x86-64 Windows
- aarch64 Linux w/ Glibc
- aarch64 MacOS
What this means is your Cosmo programs can call foreign functions on
your host operating system. However, it's important to note that any
foreign library you link won't have the ability to call functions in
your Cosmopolitan program. For example it's now technically possible
that Lua can load a module, however that almost certainly won't work
since the Lua module won't have access to Cosmo's Lua API.
Kudos to @jacereda for figuring out how to do this.
* [metal] Add a uprintf() routine, for non-emergency boot logging
* [metal] _Really_ push forward timing of VGA TTY initialization
* [metal] Do something useful with uprintf()
* [metal] Locate some ACPI tables, for later hardware detection
Specifically the code now tries to find the ACPI RSDP,
RSDT/XSDT, FADT, & MADT tables, whether in legacy BIOS
bootup mode or in a UEFI bootup. These are useful for
figuring out how to (re)enable asynchronous interrupts
in legacy 8259 PIC mode.
This change deletes mkfifo() so that GNU Make on Windows will work in
parallel mode using its pipe-based implementation. There's an example
called greenbean2 now, which shows how to build a scalable web server
for Windows with 10k+ threads. The accuracy of clock_nanosleep is now
significantly improved on Linux.
- We now serialize the file descriptor table when spawning / executing
processes on Windows. This means you can now inherit more stuff than
just standard i/o. It's needed by bash, which duplicates the console
to file descriptor #255. We also now do a better job serializing the
environment variables, so you're less likely to encounter E2BIG when
using your bash shell. We also no longer coerce environ to uppercase
- execve() on Windows now remotely controls its parent process to make
them spawn a replacement for itself. Then it'll be able to terminate
immediately once the spawn succeeds, without having to linger around
for the lifetime as a shell process for proxying the exit code. When
process worker thread running in the parent sees the child die, it's
given a handle to the new child, to replace it in the process table.
- execve() and posix_spawn() on Windows will now provide CreateProcess
an explicit handle list. This allows us to remove handle locks which
enables better fork/spawn concurrency, with seriously correct thread
safety. Other codebases like Go use the same technique. On the other
hand fork() still favors the conventional WIN32 inheritence approach
which can be a little bit messy, but is *controlled* by guaranteeing
perfectly clean slates at both the spawning and execution boundaries
- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
there's no reason to use that and it's only supported by FreeBSD. By
using the system word size, signal mask manipulation on Windows goes
very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
Windows to take advantage of signal masking, now that it's much more
pleasant to use.
- All the overlapped i/o code on Windows has been rewritten for pretty
good signal and cancelation safety. We're now able to ensure overlap
data structures are cleaned up so long as you don't longjmp() out of
out of a signal handler that interrupted an i/o operation. Latencies
are also improved thanks to the removal of lots of "busy wait" code.
Waits should be optimal for everything except poll(), which shall be
the last and final demon we slay in the win32 i/o horror show.
- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
as RUSAGE_SELF, thanks to aggregation in the process manager thread.
It's now possible to use sigaltstack() to recover from stack overflows
on Windows. Several bugs in sigaltstack() have been fixed, for all our
supported platforms. There's a newer better example showing how to use
this, along with three independent unit tests just to further showcase
the various techniques.
This reverts commit b01282e23e. Some tests
are broken. It's not clear how it'll impact metal yet. Let's revisit the
memory optimization benefits of this change again sometime soon.
This reduces the virtual memory usage of Emacs for me by 30%. We now
have a simpler implementation that uses read(), rather mmap()ing the
whole executable.
- Improved async signal safety of read() particularly for longjmp()
- Started adding cancel cleanup handlers for locks / etc on Windows
- Make /dev/tty work better particularly for uses like `foo | less`
- Eagerly read console input into a linked list, so poll can signal
- Fix some libc definitional bugs, which configure scripts detected
This change removes our use of ENABLE_VIRTUAL_TERMINAL_INPUT (which
isn't very good) in favor of having read() translate Windows Console
input events to ANSI/XTERM sequences by hand. This makes it possible to
capture important keystrokes (e.g. ctrl-space) that weren't possible
before. Most importantly this change also removes the stdin/sigwinch
worker threads, which never really worked that well. Interactive TTY
sessions will now work reliably when a Cosmo process spawns or forks
another Cosmo process, e.g. unbourne.com launching emacs.com.
- Every unit test now passes on Apple Silicon. The final piece of this
puzzle was porting our POSIX threads cancelation support, since that
works differently on ARM64 XNU vs. AMD64. Our semaphore support on
Apple Silicon is also superior now compared to AMD64, thanks to the
grand central dispatch library which lets *NSYNC locks go faster.
- The Cosmopolitan runtime is now more stable, particularly on Windows.
To do this, thread local storage is mandatory at all runtime levels,
and the innermost packages of the C library is no longer being built
using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
process startup phase, and then later on the runtime re-allocates it
either statically or dynamically to support code using _Thread_local.
fork() and execve() now do a better job cooperating with threads. We
can now check how much stack memory is left in the process or thread
when functions like kprintf() / execve() etc. call alloca(), so that
ENOMEM can be raised, reduce a buffer size, or just print a warning.
- POSIX signal emulation is now implemented the same way kernels do it
with pthread_kill() and raise(). Any thread can interrupt any other
thread, regardless of what it's doing. If it's blocked on read/write
then the killer thread will cancel its i/o operation so that EINTR can
be returned in the mark thread immediately. If it's doing a tight CPU
bound operation, then that's also interrupted by the signal delivery.
Signal delivery works now by suspending a thread and pushing context
data structures onto its stack, and redirecting its execution to a
trampoline function, which calls SetThreadContext(GetCurrentThread())
when it's done.
- We're now doing a better job managing locks and handles. On NetBSD we
now close semaphore file descriptors in forked children. Semaphores on
Windows can now be canceled immediately, which means mutexes/condition
variables will now go faster. Apple Silicon semaphores can be canceled
too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
syscalls are now used on XNU when appropriate to ensure pthread_cancel
requests aren't lost. The MbedTLS library has been updated to support
POSIX thread cancelations. See tool/build/runitd.c for an example of
how it can be used for production multi-threaded tls servers. Handles
on Windows now leak less often across processes. All i/o operations on
Windows are now overlapped, which means file pointers can no longer be
inherited across dup() and fork() for the time being.
- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
which means, for example, that posix_spawn() now goes 3x faster. POSIX
spawn is also now more correct. Like Musl, it's now able to report the
failure code of execve() via a pipe although our approach favors using
shared memory to do that on systems that have a true vfork() function.
- We now spawn a thread to deliver SIGALRM to threads when setitimer()
is used. This enables the most precise wakeups the OS makes possible.
- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
it turned out the kernel would actually commit the PT_GNU_STACK size
which caused RSS to be 6mb for every process. Now it's down to ~4kb.
On Apple Silicon, we reduce the mandatory upstream thread size to the
smallest possible size to reduce the memory overhead of Cosmo threads.
The examples directory has a program called greenbean which can spawn
a web server on Linux with 10,000 worker threads and have the memory
usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
thread-local storage is now optional; it won't be allocated until the
pthread_setspecific/getspecific functions are called. On Windows, the
threads that get spawned which are internal to the libc implementation
use reserve rather than commit memory, which shaves a few hundred kb.
- sigaltstack() is now supported on Windows, however it's currently not
able to be used to handle stack overflows, since crash signals are
still generated by WIN32. However the crash handler will still switch
to the alt stack, which is helpful in environments with tiny threads.
- Test binaries are now smaller. Many of the mandatory dependencies of
the test runner have been removed. This ensures many programs can do a
better job only linking the the thing they're testing. This caused the
test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb
- long double is no longer used in the implementation details of libc,
except in the APIs that define it. The old code that used long double
for time (instead of struct timespec) has now been thoroughly removed.
- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
backtraces itself, it'll just print a command you can run on the shell
using our new `cosmoaddr2line` program to view the backtrace.
- Crash report signal handling now works in a much better way. Instead
of terminating the process, it now relies on SA_RESETHAND so that the
default SIG_IGN behavior can terminate the process if necessary.
- Our pledge() functionality has now been fully ported to AARCH64 Linux.
The stdio reader thread now appears to be working recursively along
cosmopolitan subprocesses. For example, it's now possible to launch
vim.com from the unbourne.com bestline repl, thanks to hacks plus a
bug fix to select() timeouts.
- Remove misguided __assert_disabled variable
- Change EPROCLIM to be EAGAIN on BSD distros
- Improve quality of greenbean with cancellations
- Fix thread race condition crash with file descriptors
- Polyfill readlink("foo/") dir check on Windows
- Support asynchronous signal delivery on Windows
- Restore Windows Console from execve() daisy chain
- Work around bug in AARCH64 Optimized Routines memcmp()
- Disable unbourne.com shell completion on Windows for now
- Don't always set virtual terminal input state on console
- Remove Musl Libc's unusual preservation of realpath("//")
- Make realpath() strongly link malloc() to pass configure test
- Delete cosh.com shell, now that unbourne.com works on Windows!
- Invent openatemp() API
- Invent O_UNLINK open flag
- Introduce getenv_secure() API
- Remove `git pull` from cosmocc
- Fix utimes() when path is NULL
- Fix mktemp() to never return NULL
- Fix utimensat() UTIME_OMIT on XNU
- Improve utimensat() code for RHEL5
- Turn `argv[0]` C:/ to /C/ on Windows
- Introduce tmpnam() and tmpnam_r() APIs
- Fix more const issues with internal APIs
- Permit utimes() on WIN32 in O_RDONLY mode
- Fix fdopendir() to check fd is a directory
- Fix recent crash regression in landlock make
- Fix futimens(AT_FDCWD, NULL) to return EBADF
- Use workaround so `make -j` doesn't fork bomb
- Rename dontdiscard to __wur (just like glibc)
- Fix st_size for WIN32 symlinks containing UTF-8
- Introduce stdio ext APIs needed by GNU coreutils
- Fix lstat() on WIN32 for symlinks to directories
- Move some constants from normalize.inc to limits.h
- Fix segv with memchr() and memcmp() overlapping page
- Implement POSIX fflush() behavior for reader streams
- Implement AT_SYMLINK_NOFOLLOW for utimensat() on WIN32
- Don't change read-only status of existing files on WIN32
- Correctly handle `0x[^[:xdigit:]]` case in strtol() functions
This change fixes Cosmopolitan so it has fewer opinions about compiler
warnings. The whole repository had to be cleaned up to be buildable in
-Werror -Wall mode. This lets us benefit from things like strict const
checking. Some actual bugs might have been caught too.
- Get SIGWINCH working again on the New Technology
- Correctly handle O_NOFOLLOW in open() on Windows
- Implement synthetic umask() functionality on Windows
- Do a better job managing file execute access on Windows
- Fill in `st_uid` and `st_gid` with username hash on Windows
- Munge UNICODE control pictures into control codes on Windows
- Do a better job ensuring Windows console settings are restored
- Introduce KPRINTF_LOG environment variable to log kprintf to a file
This change reduces the memory requirements of your APE Loader by 10x,
in terms of virtual memory size, thanks to the help of alloca(). We're
also now creating argument blocks with the same layout across systems.
- Fix mkdeps.com out of memory error
- Remove static memory from __get_cpu_count()
- Add support for passing hyphen to cat in cocmd
- Change more ZipOS errors from ENOTSUP to EROFS
- Specify mem_unit in sysinfo() output on BSD OSes