Your Actually Portable Executables now contains a simple virtual memory
that works similarly to the Linux Kernel in the sense that it maps your
physical memory to negative addresses. This is needed to support mmap()
and malloc(). This functionality has zero code size impact. For example
the MODE=tiny LIFE.COM executable is still only 12KB in size.
The APE bootloader code has also been simplified to improve readibility
and further elevate the elegance by which we're able to support so many
platforms thereby enhancing verifiability so that we may engender trust
in this bootloading process.
It turns out adding OpenBSD msyscall() origin verification broke the
--ftrace flag. The executable needs to issue raw syscalls while it's
rewriting itself. So they need to be in the same section, and that's
just plain simpler too.
- Get ASAN working on Windows.
- Deleting directories and then recreating them with the same name in a
short period of time appears to be a no-no on Windows.
- There's no reason to call FlushFileBuffers on close() for pipes, and
it's harmful since it might block indefinitely for no good reason.
- Support deterministic stacks on OpenBSD
- Support OpenBSD system call origin verification
- Fix overrun by one in chibicc string token allocator
- Get all chibicc tests passing under Address Sanitizer
This change enables Address Sanitizer systemically w/ `make MODE=dbg`.
Our version of Rust's `unsafe` keyword is named `noasan` which is used
for two functions that do aligned memory chunking, like `strcpy.c` and
we need to fix the tiny DEFLATE code, but that's it everything else is
fabulous you can have all the fischer price security blankets you need
Best of all is we're now able to use the ASAN data in Blinkenlights to
colorize the memory dumps. See the screenshot below of a test program:
https://justine.lol/blinkenlights/asan.png
Which is operating on float arrays stored on the stack, with red areas
indicating poisoned memory, and the green areas indicate valid memory.