Manually manage the lifetime of `value_` by using an anonymous
`union`. This fixes a bunch of double-frees and double-constructs.
Additionally move the `present_` flag last. When `T` has padding
`present_` will be placed there saving `alignof(T)` bytes from
`sizeof(optional<T>)`.
There were a few errors in how capacity and memory was being handled for
small strings. The capacity errors meant that small strings would become
big strings too soon, and the memory error introduced undefined behavior
that was caught by CheckMemoryLeaks in our test file but only sometimes.
The crucial change is in reserve: we only copy n bytes into p2, and then
we manually set the null terminator instead of expecting it to have been
there already. (E.g. it might not be there for an empty small string.)
We also fix one other doozy in append when we were exactly at the small-
to-big string boundary: we set the last byte (i.e., the remainder field)
to 0, then decremented it, giving us size_t max. Whoops. We boneheadedly
fix this by setting the 0 byte after we've fixed up the remainder, so it
is at worst a no-op.
Otherwise, capacity now works the same for small strings as it does with
big strings: it's the amount of space available including the null byte.
We test all of this with a new test that only gets included if our class
under test is not std::string (presumably meaning it's ctl::string.) The
test manually verifies that the small string optimization behaves how we
expect.
Since this test checks against std::string, we go ahead and include that
other header from the STL.
Also modifies the new test we introduced to also run on std::string, but
it just does the append without expecting anything about how its data is
stored. We also check that the string has the right value afterwards.
A small-string optimization is a way of reusing inline storage space for
sufficiently small strings, rather than allocating them on the heap. The
current approach takes after an old Facebook string class: it reuses the
highest-order byte for flags and small-string size, in such a way that a
maximally-sized small string will have its last byte zeroed, making it a
null terminator for the C string.
The only flag we have is in the highest-order bit, that says whether the
string is big (set) or small (cleared.) Most of the logic switches based
on the value of this bit; e.g. data() returns big()->p if it's set, else
small()->buf if it's cleared. For a small string, the capacity is always
fixed at sizeof(string) - 1 bytes; we store the length in the last byte,
but we store it as the number of remaining bytes of capacity, so that at
max size, the last byte will read zero and serve as our null terminator.
Morally speaking, our class's storage is a union over two POD C structs.
For now I gravitated towards a slightly more obtuse approach: the string
class itself contains a blob of the right size, and we alias that blob's
pointer for the two structs, taking some care not to run afoul of object
lifetime rules in C++. If anyone wants to improve on this, contributions
are welcome.
This commit also introduces the `ctl::__` namespace. It can't be legally
spelled by library users, and serves as our version of boost's "detail".
We introduced a string::swap function, and we now use that in operator=.
operator= now takes its argument by value, so we never need to check for
the case where the pointers are equal and can just swap the entire store
of the argument with our own, leaving the C++ destructor to free our old
storage afterwards.
There are probably still a few places where our capacity is slightly off
and we grow too fast, although there don't appear to be any where we are
too slow. I will leave these to be fixed in future changes.
If pthread_create() is linked into the binary, then the cosmo runtime
will create an independent dlmalloc arena for each core. Whenever the
malloc() function is used it will index `g_heaps[sched_getcpu() / 2]`
to find the arena with the greatest hyperthread / numa locality. This
may be configured via an environment variable. For example if you say
`export COSMOPOLITAN_HEAP_COUNT=1` then you can restore the old ways.
Your process may be configured to have anywhere between 1 - 128 heaps
We need this revision because it makes multithreaded C++ applications
faster. For example, an HTTP server I'm working on that makes extreme
use of the STL went from 16k to 2000k requests per second, after this
change was made. To understand why, try out the malloc_test benchmark
which calls malloc() + realloc() in a loop across many threads, which
sees a a 250x improvement in process clock time and 200x on wall time
The tradeoff is this adds ~25ns of latency to individual malloc calls
compared to MODE=tiny, once the cosmo runtime has transitioned into a
fully multi-threaded state. If you don't need malloc() to be scalable
then cosmo provides many options for you. For starters the heap count
variable above can be set to put the process back in single heap mode
plus you can go even faster still, if you include tinymalloc.inc like
many of the programs in tool/build/.. are already doing since that'll
shave tens of kb off your binary footprint too. Theres also MODE=tiny
which is configured to use just 1 plain old dlmalloc arena by default
Another tradeoff is we need more memory now (except in MODE=tiny), to
track the provenance of memory allocation. This is so allocations can
be freely shared across threads, and because OSes can reschedule code
to different CPUs at any time.
Cosmo will now print C++ symbols correctly in --ftrace logs and
backtraces. Doing this required reducing the memory requirement
of the __demangle() function by 3x. This was accomplished using
16-bit indices and 16-bit malloc granularity. That puts a limit
on the longest symbol we can successfully decode, which I think
would be around 6553 characters long, given a 65536-byte buffer
The V8 behavior of encoding infinity as null doesn't make sense to me.
Using ±1e5000 is better, because JSON.parse decodes it as INFINITY and
the information is preserved. This could be a breaking change for some
Microsoft caused some very gentle breakages for Cosmopolitan. They
removed the version information from the PEB which caused uname to
report WINDOWS 0.0.0. We should have called GetVersionExW but that
doesn't really exist anymore either. Windows policy is now to give
whatever version we used in ape/ape.S. Windows8 has been EOL since
2023-01-10 so lets avoid our modern executables being relegated to
legacy infrastructure. Requiring Windows 10+ going forward lets us
remove runtime compatibility bloat from the codebase. Further note
Cosmopolitan maintains a Windows Vista branch on GitHub, so anyone
preferring the older versions, can still have a future with Cosmo.
Another neat thing this fixes is UTF-8 support in the console. The
changes Microsoft made broke the if statement that enabled UTF8 in
terminals. This explains why bug reports had broken arrows. In the
future this should be less of an issue, since the PEB code is gone
which means we more strictly conform to only Microsoft's WIN32 API
Cosmo's _Cz_crc32() function now goes 73 GiB/s on Threadripper. This
will significantly improve the performance of the PKZIP file format.
This algorithm is also used by apelink, to create deterministic ids.
This change adds a TLS freelist for small dynamic memory allocations.
Cosmopolitan's TIB is now 512 bytes in size. Single-threaded malloc()
performance isn't impacted by this, until pthread_create() is called.
Single-threaded programs may also want to consider using:
#include "libc/mem/tinymalloc.inc"
Which will shave 30k off the executable size and sometimes go faster.
We're now able to pretty print a C++ backtrace upon crashing in pretty
much any runtime execution scenario. The default pledge sandbox policy
on Linux is now to return EPERM. If you call pledge and have debugging
functions linked (e.g. GetSymbolTable) then the symbol table shall get
loaded before any security policy is put in place. This change updates
build/bootstrap/fixupobj too and fixes some other sneaky build errors.
It's now possible to safely print C++ backtraces from signal handlers.
This symbol demangler doesn't need malloc, tls, or even static memory.
Additionally, this change makes it 2x faster and adds test cases. It's
almost as performant and accurate as the libcxxabi implementation now.
Cosmopolitan now supports 104 time zones. They're embedded inside any
binary that links the localtime() function. Doing so adds about 100kb
to the binary size. This change also gets time zones working properly
on Windows for the first time. It's not needed to have /etc/localtime
exist on Windows, since we can get this information from WIN32. We're
also now updated to the latest version of Paul Eggert's TZ library.
Signals are extremely difficult to unit test reliably. This is why
functions like sigsuspend() exist. When testing something else and
portably it becomes impossible without access to kernel internals.
OpenMP flakes in QEMU on one of my workstations. I don't think the
support is production worthy, because there's been issues on MacOS
additionally. It works great for every experiment I've used it for
though. However a flaky test is worse than no test at all. So it's
removed until someone takes an interest in productionizing it.
We have an optimized version of zlib from the Chromium project.
We need it for a lot of our libc services. It would be nice to export
this to user applications if we can, since projects like llamafile are
already depending on it under the private namespace, to avoid
needing to link zlib twice.
The feenableexcept() and fedisableexcept() APIs are now provided which
let you detect when NaNs appear the moment it happens from anywhere in
your program. Tests have also been added for the mission critical math
functions expf() and erff(), whose perfect operation has been assured.
See examples/trapping.c to see how to use this powerful functionality.
Commit bc6c183 introduced a bunch of discrepancies between what files
look like in the repo and what clang-format says they should look like.
However, there were already a few discrepancies prior to that. Most of
these discrepancies seemed to be unintentional, but a few of them were
load-bearing (e.g., a #include that violated header ordering needing
something to have been #defined by a 'later' #include.)
I opted to take what I hope is a relatively smooth-brained approach: I
reverted the .clang-format change, ran clang-format on the whole repo,
reapplied the .clang-format change, reran clang-format again, and then
reverted the commit that contained the first run. Thus the full effect
of this PR should only be to apply the changed formatting rules to the
repo, and from skimming the results, this seems to be the case.
My work can be checked by applying the short, manual commits, and then
rerunning the command listed in the autogenerated commits (those whose
messages I have prefixed auto:) and seeing if your results agree.
It might be that the other diffs should be fixed at some point but I'm
leaving that aside for now.
fd '\.c(c|pp)?$' --print0| xargs -0 clang-format -i
Now that these functions are behind _COSMO_SOURCE there's no reason for
having the ugly underscore anymore. To use these functions, you need to
pass -mcosmo to cosmocc.
The WIN32 CreateProcess() function does not require an .exe or .com
suffix in order to spawn an executable. Now that we have Cosmo bash
we're no longer so dependent on the cmd.exe prompt.
- Write some more unit tests
- memcpy() on ARM is now faster
- Address the Musl complex math FIXME comments
- Some libm funcs like pow() now support setting errno
- Import the latest and greatest math functions from ARM
- Use more accurate atan2f() and log1pf() implementations
- atoi() and atol() will no longer saturate or clobber errno
* Fix reading the same symbol twice when using `{f,}scanf()`
PR #924 appears to use `unget()` subtly incorrectly when parsing
floating point numbers. The rest of the code only uses `unget()`
immediately followed by `goto Done;` to return back the symbol that
can't possibly belong to the directive we're processing.
With floating-point, however, the ungot characters could very well
be valid for the *next* directive, so we will essentially read them
twice. It can't be seen in `sscanf()` tests because `unget()` is a
no-op there, but the test I added for `fscanf()` fails like this:
...
EXPECT_EQ(0xDEAD, i1)
need 57005 (or 0xdead) =
got 908973 (or 0x000ddead)
...
EXPECT_EQ(0xBEEF, i2)
need 48879 (or 0xbeef) =
got 769775 (or 0x000bbeef)
This means we read 0xDDEAD instead of 0xDEAD and 0xBBEEF instead of
0xBEEF. I checked that both musl and glibc read 0xDEAD/0xBEEF, as
expected.
Fix the failing test by removing the unneeded `unget()` calls.
* Don't read invalid floating-point numbers in `*scanf()`
Currently, we just ignore any errors from `strtod()`. They can
happen either because no valid float can be parsed at all, or
because the state machine recognizes only a prefix of a valid
floating-point number.
Fix this by making sure `strtod()` parses everything we recognized,
provided it's non-empty. This requires to pop the last character
off the FP buffer, which is supposed to be parsed by the next
`*scanf()` directive.
* Make `%c` parsing in `*scanf()` respect the C standard
Currently, `%c`-style directives always succeed even if there
are actually fewer characters in the input than requested.
Before the fix, the added test fails like this:
...
EXPECT_EQ(2, sscanf("ab", "%c %c %c", &c2, &c3, &c4))
need 2 (or 0x02 or '\2' or ENOENT) =
got 3 (or 0x03 or '\3' or ESRCH)
...
EXPECT_EQ(0, sscanf("abcd", "%5c", s2))
need 0 (or 0x0 or '\0') =
got 1 (or 0x01 or '\1' or EPERM)
musl and glibc pass this test.