Cosmopolitan Libc once called this important function although somewhere
along the way, possibly in a refactoring, it got removed and __tls_alloc
has always been zero ever since.
It hasn't been helpful enough to be justify the maintenance burden. What
actually does help is mprotect(), kprintf(), --ftrace and --strace which
can always be counted upon to work correctly. We aren't losing much with
this change. Support for ASAN on AARCH64 was never implemented. Applying
ASAN to the core libc runtimes was disabled many months ago. If there is
some way to have an ASAN runtime for user programs that is less invasive
we can potentially consider reintroducing support. But now is premature.
The feenableexcept() and fedisableexcept() APIs are now provided which
let you detect when NaNs appear the moment it happens from anywhere in
your program. Tests have also been added for the mission critical math
functions expf() and erff(), whose perfect operation has been assured.
See examples/trapping.c to see how to use this powerful functionality.
This change upgrades to GCC 12.3 and GNU binutils 2.42. The GNU linker
appears to have changed things so that only a single de-duplicated str
table is present in the binary, and it gets placed wherever the linker
wants, regardless of what the linker script says. To cope with that we
need to stop using .ident to embed licenses. As such, this change does
significant work to revamp how third party licenses are defined in the
codebase, using `.section .notice,"aR",@progbits`.
This new GCC 12.3 toolchain has support for GNU indirect functions. It
lets us support __target_clones__ for the first time. This is used for
optimizing the performance of libc string functions such as strlen and
friends so far on x86, by ensuring AVX systems favor a second codepath
that uses VEX encoding. It shaves some latency off certain operations.
It's a useful feature to have for scientific computing for the reasons
explained by the test/libcxx/openmp_test.cc example which compiles for
fifteen different microarchitectures. Thanks to the upgrades, it's now
also possible to use newer instruction sets, such as AVX512FP16, VNNI.
Cosmo now uses the %gs register on x86 by default for TLS. Doing it is
helpful for any program that links `cosmo_dlopen()`. Such programs had
to recompile their binaries at startup to change the TLS instructions.
That's not great, since it means every page in the executable needs to
be faulted. The work of rewriting TLS-related x86 opcodes, is moved to
fixupobj.com instead. This is great news for MacOS x86 users, since we
previously needed to morph the binary every time for that platform but
now that's no longer necessary. The only platforms where we need fixup
of TLS x86 opcodes at runtime are now Windows, OpenBSD, and NetBSD. On
Windows we morph TLS to point deeper into the TIB, based on a TlsAlloc
assignment, and on OpenBSD/NetBSD we morph %gs back into %fs since the
kernels do not allow us to specify a value for the %gs register.
OpenBSD users are now required to use APE Loader to run Cosmo binaries
and assimilation is no longer possible. OpenBSD kernel needs to change
to allow programs to specify a value for the %gs register, or it needs
to stop marking executable pages loaded by the kernel as mimmutable().
This release fixes __constructor__, .ctor, .init_array, and lastly the
.preinit_array so they behave the exact same way as glibc.
We no longer use hex constants to define math.h symbols like M_PI.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
- We now serialize the file descriptor table when spawning / executing
processes on Windows. This means you can now inherit more stuff than
just standard i/o. It's needed by bash, which duplicates the console
to file descriptor #255. We also now do a better job serializing the
environment variables, so you're less likely to encounter E2BIG when
using your bash shell. We also no longer coerce environ to uppercase
- execve() on Windows now remotely controls its parent process to make
them spawn a replacement for itself. Then it'll be able to terminate
immediately once the spawn succeeds, without having to linger around
for the lifetime as a shell process for proxying the exit code. When
process worker thread running in the parent sees the child die, it's
given a handle to the new child, to replace it in the process table.
- execve() and posix_spawn() on Windows will now provide CreateProcess
an explicit handle list. This allows us to remove handle locks which
enables better fork/spawn concurrency, with seriously correct thread
safety. Other codebases like Go use the same technique. On the other
hand fork() still favors the conventional WIN32 inheritence approach
which can be a little bit messy, but is *controlled* by guaranteeing
perfectly clean slates at both the spawning and execution boundaries
- sigset_t is now 64 bits. Having it be 128 bits was a mistake because
there's no reason to use that and it's only supported by FreeBSD. By
using the system word size, signal mask manipulation on Windows goes
very fast. Furthermore @asyncsignalsafe funcs have been rewritten on
Windows to take advantage of signal masking, now that it's much more
pleasant to use.
- All the overlapped i/o code on Windows has been rewritten for pretty
good signal and cancelation safety. We're now able to ensure overlap
data structures are cleaned up so long as you don't longjmp() out of
out of a signal handler that interrupted an i/o operation. Latencies
are also improved thanks to the removal of lots of "busy wait" code.
Waits should be optimal for everything except poll(), which shall be
the last and final demon we slay in the win32 i/o horror show.
- getrusage() on Windows is now able to report RUSAGE_CHILDREN as well
as RUSAGE_SELF, thanks to aggregation in the process manager thread.
- More timspec_*() and timeval_*() APIs have been introduced.
- The copyfd() function is now simplified thanks to POSIX rules.
- More Cosmo-specific APIs have been moved behind the COSMO define.
- The setitimer() polyfill for Windows NT is now much higher quality.
- Fixed build error for MODE=aarch64 due to -mstringop-strategy=loop.
- This change introduces `make MODE=nox87 toolchain` which makes it
possible to build programs using your cosmocc toolchain that don't
have legacy fpu instructions. This is useful, for example, if you
want to have a ~22kb tinier blink virtual machine.
This change implements a new approach to function call logging, that's
based on the GCC flag: -fpatchable-function-entry. Read the commentary
in build/config.mk to learn how it works.
- Exhaustively document cancellation points
- Rename SIGCANCEL to SIGTHR just like BSDs
- Further improve POSIX thread cancellations
- Ensure asynchronous cancellations work correctly
- Elevate the quality of getrandom() and getentropy()
- Make futexes cancel correctly on OpenBSD 6.x and 7.x
- Add reboot.com and shutdown.com to examples directory
- Remove underscore prefix from awesome timespec_*() APIs
- Create assertions that help verify our cancellation points
- Remove bad timespec APIs (cmp generalizes eq/ne/gt/gte/lt/lte)
This makes breaking changes to add underscores to many non-standard
function names provided by the c library. MODE=tiny is now tinier and
we now use smaller locks that are better for tiny apps in this mode.
Some headers have been renamed to be in the same folder as the build
package, so it'll be easier to know which build dependency is needed.
Certain old misguided interfaces have been removed. Intel intrinsics
headers are now listed in libc/isystem (but not in the amalgamation)
to help further improve open source compatibility. Header complexity
has also been reduced. Lastly, more shell scripts are now available.
* Fix deterministic startup stack setup, especially for bare metal
* Implement __enable_tls() on bare metal
* Get __get_tls_privileged() working on bare metal
We had previously not enabled TLS in MODE=tiny in order to keep the
smallest example programs (e.g. life.com) just 16kb in size. But it
was error prone doing that, so now we just always enable it because
this change uses hacks to ensure it won't increase life.com's size.
This change also fixes a bug on NetBSD, where signal handlers would
break thread local storage if SA_SIGINFO was being used. This looks
like it might be a bug in NetBSD, but it's got a simple workaround.
The greenbean web server now works nearly perfectly on Windows with over
1000 threads. But some synchronization issues still remain which prevent
us from going over nine thousand.
This change introduces a `-W /dev/pts/1` flag to redbean. What it does
is use the mincore() system call to create a dual-screen terminal
display that lets you troubleshoot the virtual address space. This is
useful since page faults are an important thing to consider when using a
forking web server. Now we have a colorful visualization of which pages
are going to fault and which ones are resident in memory.
The memory monitor, if enabled, spawns as a thread that just outputs
ANSI codes to the second terminal in a loop. In order to make this
happen using the new clone() polyfill, stdio is now thread safe.
This change also introduces some new demo pages to redbean. It also
polishes the demos we already have, to look a bit nicer and more
presentable for the upcoming release, with better explanations too.
- Get threads working on NetBSD
- Get threads working on OpenBSD
- Fix Emacs config for Emacs v28
- Improve --strace logging of sigset_t
- Improve --strace logging of struct stat
- Improve memory safety of DescribeThing functions
- Refactor auto stack allocation into LIBC_RUNTIME
- Introduce shell.com example which works on Windows
- Refactor __strace_thing into DescribeThing functions
- Document the CHECK macros and improve them in NDEBUG mode
- Rewrite MAP_STACK so it uses FreeBSD behavior across platforms
- Deprecate and discourage the use of MAP_GROWSDOWN (it's weird)
This change makes further effort towards improving our poll()
implementation on the New Technology. The stdin worker didn't work out
so well for Python so it's not being used for now. System call tracing
with the --strace flag should now be less noisy now on Windows unless
you modify the strace.internal.h defines to turn on some optional ones
that are most useful for debugging the system call wrappers.
This change fixes minor bugs and adds a feature, which lets us store the
ELF symbol table, inside the ZIP directory. We use the path /zip/.symtab
which can be safely removed using a zip editing tool, to make the binary
smaller after compilation. This supplements the existing method of using
a separate .com.dbg file, which is still supported. The intent is people
don't always know that it's a good idea to download the debug file. It's
not great having someone's first experience be a crash report, that only
has numbers rather than symbols. This will help fix that!
This is similar to the --ftrace (c function call trace) flag, except
it's less noisy since it only logs system calls to stderr. Having this
flag is valuable because (1) system call tracing tells us a lot about
the behavior of complex programs and (2) it's usually very hard to get
system call tracing on various operating systems, e.g. strace, ktrace,
dtruss, truss, nttrace, etc. Especially on Apple platforms where even
with the special boot trick, debuggers still aren't guaranteed to work.
make -j8 o//examples
o//examples/hello.com --strace
This is enabled by default in MODE=, MODE=opt, and MODE=dbg. In MODE=dbg
extra information will be printed.
make -j8 MODE=dbg o/dbg/examples
o/dbg/examples/hello.com --strace |& less
This change also changes:
- Rename IsText() → _istext()
- Rename IsUtf8() → _isutf8()
- Fix madvise() on Windows NT
- Fix empty string case of inet_ntop()
- vfork() wrapper now saves and restores errno
- Update xsigaction() to yoink syscall support
Cosmopolitan Threads are currently Linux-only (with some NetBSD
and Windows support too!). This change ensures we only initialize
the high-level threading runtime when Cosmopolitan Threads are used.
- Python static hello world now 1.8mb
- Python static fully loaded now 10mb
- Python HTTPS client now uses MbedTLS
- Python REPL now completes import stmts
- Increase stack size for Python for now
- Begin synthesizing posixpath and ntpath
- Restore Python \N{UNICODE NAME} support
- Restore Python NFKD symbol normalization
- Add optimized code path for Intel SHA-NI
- Get more Python unit tests passing faster
- Get Python help() pagination working on NT
- Python hashlib now supports MbedTLS PBKDF2
- Make memcpy/memmove/memcmp/bcmp/etc. faster
- Add Mersenne Twister and Vigna to LIBC_RAND
- Provide privileged __printf() for error code
- Fix zipos opendir() so that it reports ENOTDIR
- Add basic chmod() implementation for Windows NT
- Add Cosmo's best functions to Python cosmo module
- Pin function trace indent depth to that of caller
- Show memory diagram on invalid access in MODE=dbg
- Differentiate stack overflow on crash in MODE=dbg
- Add stb_truetype and tools for analyzing font files
- Upgrade to UNICODE 13 and reduce its binary footprint
- COMPILE.COM now logs resource usage of build commands
- Start implementing basic poll() support on bare metal
- Set getauxval(AT_EXECFN) to GetModuleFileName() on NT
- Add descriptions to strerror() in non-TINY build modes
- Add COUNTBRANCH() macro to help with micro-optimizations
- Make error / backtrace / asan / memory code more unbreakable
- Add fast perfect C implementation of μ-Law and a-Law audio codecs
- Make strtol() functions consistent with other libc implementations
- Improve Linenoise implementation (see also github.com/jart/bestline)
- COMPILE.COM now suppresses stdout/stderr of successful build commands
The ZIP filesystem has a breaking change. You now need to use /zip/ to
open() / opendir() / etc. assets within the ZIP structure of your APE
binary, instead of the previous convention of using zip: or zip! URIs.
This is needed because Python likes to use absolute paths, and having
ZIP paths encoded like URIs simply broke too many things.
Many more system calls have been updated to be able to operate on ZIP
files and file descriptors. In particular fcntl() and ioctl() since
Python would do things like ask if a ZIP file is a terminal and get
confused when the old implementation mistakenly said yes, because the
fastest way to guarantee native file descriptors is to dup(2). This
change also improves the async signal safety of zipos and ensures it
doesn't maintain any open file descriptors beyond that which the user
has opened.
This change makes a lot of progress towards adding magic numbers that
are specific to platforms other than Linux. The philosophy here is that,
if you use an operating system like FreeBSD, then you should be able to
take advantage of FreeBSD exclusive features, even if we don't polyfill
them on other platforms. For example, you can now open() a file with the
O_VERIFY flag. If your program runs on other platforms, then Cosmo will
automatically set O_VERIFY to zero. This lets you safely use it without
the need for #ifdef or ifstatements which detract from readability.
One of the blindspots of the ASAN memory hardening we use to offer Rust
like assurances has always been that memory passed to the kernel via
system calls (e.g. writev) can't be checked automatically since the
kernel wasn't built with MODE=asan. This change makes more progress
ensuring that each system call will verify the soundness of memory
before it's passed to the kernel. The code for doing these checks is
fast, particularly for buffers, where it can verify 64 bytes a cycle.
- Correct O_LOOP definition on NT
- Introduce program_executable_name
- Add ASAN guards to more system calls
- Improve termios compatibility with BSDs
- Fix bug in Windows auxiliary value encoding
- Add BSD and XNU specific errnos and open flags
- Add check to ensure build doesn't talk to internet
You can now build Cosmopolitan with Clang:
make -j8 MODE=llvm
o/llvm/examples/hello.com
The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
This change enables Address Sanitizer systemically w/ `make MODE=dbg`.
Our version of Rust's `unsafe` keyword is named `noasan` which is used
for two functions that do aligned memory chunking, like `strcpy.c` and
we need to fix the tiny DEFLATE code, but that's it everything else is
fabulous you can have all the fischer price security blankets you need
Best of all is we're now able to use the ASAN data in Blinkenlights to
colorize the memory dumps. See the screenshot below of a test program:
https://justine.lol/blinkenlights/asan.png
Which is operating on float arrays stored on the stack, with red areas
indicating poisoned memory, and the green areas indicate valid memory.