Your redbean can now interoperate with clients that require TLS crypto.
This is accomplished using a protocol polyglot that lets us distinguish
between HTTP and HTTPS regardless of the port number. Certificates will
be generated automatically, if none are supplied by the user. Footprint
increases by only a few hundred kb so redbean in MODY=tiny is now 1.0mb
- Add lseek() polyfills for ZIP executable
- Automatically polyfill /tmp/FOO paths on NT
- Fix readdir() / ftw() / nftw() bugs on Windows
- Introduce -B flag for slower SSL that's stronger
- Remove mbedtls features Cosmopolitan doesn't need
- Have base64 decoder support the uri-safe alternative
- Remove Truncated HMAC because it's forbidden by the IETF
- Add all the mbedtls test suites and make them go 3x faster
- Support opendir() / readdir() / closedir() on ZIP executable
- Use Everest for ECDHE-ECDSA because it's so good it's so good
- Add tinier implementation of sha1 since it's not worth the rom
- Add chi-square monte-carlo mean correlation tests for getrandom()
- Source entropy on Windows from the proper interface everyone uses
We're continuing to outperform NGINX and other servers on raw message
throughput. Using SSL means that instead of 1,000,000 qps you can get
around 300,000 qps. However redbean isn't as fast as NGINX yet at SSL
handshakes, since redbean can do 2,627 per second and NGINX does 4.3k
Right now, the SSL UX story works best if you give your redbean a key
signing key since that can be easily generated by openssl using a one
liner then redbean will do all the things that are impossibly hard to
do like signing ecdsa and rsa certificates that'll work in chrome. We
should integrate the let's encrypt acme protocol in the future.
Live Demo: https://redbean.justine.lol/
Root Cert: https://redbean.justine.lol/redbean1.crt
- SIOCGIFCONFIG: reads and enumerate all the network interfaces
- SIOCGIFADDR: reads network address for a given interface
- SIOCGIFFLAGS: reads network flags for a given interface
- SIOCGIFNETMASK: reads network netmask for a given interface
- SIOCGIFBRDADDR: reads network broadcast address for a given interface
- SIOCGIFDSTADDR: reads peer destination address for a given
interface (not supported for Windows)
This change defines Linux ABI structs for the above interfaces and adds
polyfills to ensure they behave consistently on XNU and Windows.
- Reduce full build latency from ~20s to ~18s
- Bring back silent mode if `make V=0` is passed
- Demodernize utimes() polyfill so it works RHEL5
- Delete some old shell scripts that are no longer needed
- Truncate long lines when outputting builds to Emacs buffers
You can now build Cosmopolitan with Clang:
make -j8 MODE=llvm
o/llvm/examples/hello.com
The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
It turned out that the linker was doing the wrong with the amalgamation
library concerning weak stubs. A regression test has been added and new
binaries have been uploaded to https://justine.lol/cosmopolitan/
Ideally this should be fixed by building a tool that turns multiple .a
files into a single .a file with deduplication. As a workaround for now
the cosmopolitan.a build is restructured to not include LIBC_STUBS which
meant technical debt needed to be paid off where non-stub interfaces
were moved to LIBC_INTRIN and LIBC_NEXGEN32E.
Thank @PerfectProductions in #31 for the report!
This change pays off technical debt with the function -> DLL mappings in
libc/nt/master.sh, which was originally defined based on binary analysis
on Windows 10. It's now been updated so the kernel32/kernelbase/advapi32
imports should be exactly as they are written, on the MSDN documentation
and that wouldn't have been easy without Geoff Chappell's work thank him
https://www.geoffchappell.com/studies/windows/win32/index.htm
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.
https://justine.storage.googleapis.com/emulator625.mp4