You can now build Cosmopolitan with Clang:
make -j8 MODE=llvm
o/llvm/examples/hello.com
The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
This change enables Address Sanitizer systemically w/ `make MODE=dbg`.
Our version of Rust's `unsafe` keyword is named `noasan` which is used
for two functions that do aligned memory chunking, like `strcpy.c` and
we need to fix the tiny DEFLATE code, but that's it everything else is
fabulous you can have all the fischer price security blankets you need
Best of all is we're now able to use the ASAN data in Blinkenlights to
colorize the memory dumps. See the screenshot below of a test program:
https://justine.lol/blinkenlights/asan.png
Which is operating on float arrays stored on the stack, with red areas
indicating poisoned memory, and the green areas indicate valid memory.
For the first time ever, all tests in this codebase now pass, when
run automatically on macos, freebsd, openbsd, rhel5, rhel7, alpine
and windows via the network using the runit and runitd build tools
- Fix vfork exec path etc.
- Add XNU opendir() support
- Add OpenBSD opendir() support
- Add Linux history to syscalls.sh
- Use copy_file_range on FreeBSD 13+
- Fix system calls with 7+ arguments
- Fix Windows with greater than 16 FDs
- Fix RUNIT.COM and RUNITD.COM flakiness
- Fix OpenBSD munmap() when files are mapped
- Fix long double so it's actually long on Windows
- Fix OpenBSD truncate() and ftruncate() thunk typo
- Let Windows fcntl() be used on socket files descriptors
- Fix Windows fstat() which had an accidental printf statement
- Fix RHEL5 CLOCK_MONOTONIC by not aliasing to CLOCK_MONOTONIC_RAW
This is wonderful. I never could have dreamed it would be possible
to get it working so well on so many platforms with tiny binaries.
Fixes#31Fixes#25Fixes#14
This program popped up on Hacker News recently. It's the only modern
compiler I've ever seen that doesn't have dependencies and is easily
modified. So I added all of the missing GNU extensions I like to use
which means it might be possible soon to build on non-Linux and have
third party not vendor gcc binaries.
- Emulator can now test the αcτµαlly pδrταblε εxεcµταblε bootloader
- Whipped up a webserver named redbean. It services 150k requests per
second on a single core. Bundling assets inside zip enables extremely
fast serving for two reasons. The first is that zip central directory
lookups go faster than stat() system calls. The second is that both
zip and gzip content-encoding use DEFLATE, therefore, compressed
responses can be served via the sendfile() system call which does an
in-kernel copy directly from the zip executable structure. Also note
that red bean zip executables can be deployed easily to all platforms,
since these native executables work on Linux, Mac, BSD, and Windows.
- Address sanitizer now works very well
I wanted a tiny scriptable meltdown proof way to run userspace programs
and visualize how program execution impacts memory. It helps to explain
how things like Actually Portable Executable works. It can show you how
the GCC generated code is going about manipulating matrices and more. I
didn't feel fully comfortable with Qemu and Bochs because I'm not smart
enough to understand them. I wanted something like gVisor but with much
stronger levels of assurances. I wanted a single binary that'll run, on
all major operating systems with an embedded GPL barrier ZIP filesystem
that is tiny enough to transpile to JavaScript and run in browsers too.
https://justine.storage.googleapis.com/emulator625.mp4