Recursive mutexes now go as fast as normal mutexes. The tradeoff is they
are no longer safe to use in signal handlers. However you can still have
signal safe mutexes if you set your mutex to both recursive and pshared.
You can also make functions that use recursive mutexes signal safe using
sigprocmask to ensure recursion doesn't happen due to any signal handler
The impact of this change is that, on Windows, many functions which edit
the file descriptor table rely on recursive mutexes, e.g. open(). If you
develop your app so it uses pread() and pwrite() then your app should go
very fast when performing a heavily multithreaded and contended workload
For example, when scaling to 40+ cores, *NSYNC mutexes can go as much as
1000x faster (in CPU time) than the naive recursive lock implementation.
Now recursive will use *NSYNC under the hood when it's possible to do so
This is one of the few POSIX APIs that was missing. It lets you choose a
monotonic clock for your condition variables. This might improve perf on
some platforms. It might also grant more flexibility with NTP configs. I
know Qt is one project that believes it needs this. To introduce this, I
needed to change some the *NSYNC APIs, to support passing a clock param.
There's also new benchmarks, demonstrating Cosmopolitan's supremacy over
many libc implementations when it comes to mutex performance. Cygwin has
an alarmingly bad pthread_mutex_t implementation. It is so bad that they
would have been significantly better off if they'd used naive spinlocks.
At least in neovim, `│vi:` is not recognized as a modeline because it
has no preceding whitespace. After fixing this, opening a file yields
an error because `net` is not an option. (`noet`, however, is.)
The organization of the source files is now much more rational.
Old experiments that didn't work out are now deleted. Naming of
things like files is now more intuitive.
2022-09-10 02:56:25 -07:00
Renamed from libc/intrin/pthread_cond_init.c (Browse further)