This test broke itself due to relying on the current time. Mocking out
gettimeofday() confirms this. However, two ipv4 subject alt name tests
still surprisingly fail even with a fake current time. We'll want this
investigated further soon.
- Every unit test now passes on Apple Silicon. The final piece of this
puzzle was porting our POSIX threads cancelation support, since that
works differently on ARM64 XNU vs. AMD64. Our semaphore support on
Apple Silicon is also superior now compared to AMD64, thanks to the
grand central dispatch library which lets *NSYNC locks go faster.
- The Cosmopolitan runtime is now more stable, particularly on Windows.
To do this, thread local storage is mandatory at all runtime levels,
and the innermost packages of the C library is no longer being built
using ASAN. TLS is being bootstrapped with a 128-byte TIB during the
process startup phase, and then later on the runtime re-allocates it
either statically or dynamically to support code using _Thread_local.
fork() and execve() now do a better job cooperating with threads. We
can now check how much stack memory is left in the process or thread
when functions like kprintf() / execve() etc. call alloca(), so that
ENOMEM can be raised, reduce a buffer size, or just print a warning.
- POSIX signal emulation is now implemented the same way kernels do it
with pthread_kill() and raise(). Any thread can interrupt any other
thread, regardless of what it's doing. If it's blocked on read/write
then the killer thread will cancel its i/o operation so that EINTR can
be returned in the mark thread immediately. If it's doing a tight CPU
bound operation, then that's also interrupted by the signal delivery.
Signal delivery works now by suspending a thread and pushing context
data structures onto its stack, and redirecting its execution to a
trampoline function, which calls SetThreadContext(GetCurrentThread())
when it's done.
- We're now doing a better job managing locks and handles. On NetBSD we
now close semaphore file descriptors in forked children. Semaphores on
Windows can now be canceled immediately, which means mutexes/condition
variables will now go faster. Apple Silicon semaphores can be canceled
too. We're now using Apple's pthread_yield() funciton. Apple _nocancel
syscalls are now used on XNU when appropriate to ensure pthread_cancel
requests aren't lost. The MbedTLS library has been updated to support
POSIX thread cancelations. See tool/build/runitd.c for an example of
how it can be used for production multi-threaded tls servers. Handles
on Windows now leak less often across processes. All i/o operations on
Windows are now overlapped, which means file pointers can no longer be
inherited across dup() and fork() for the time being.
- We now spawn a thread on Windows to deliver SIGCHLD and wakeup wait4()
which means, for example, that posix_spawn() now goes 3x faster. POSIX
spawn is also now more correct. Like Musl, it's now able to report the
failure code of execve() via a pipe although our approach favors using
shared memory to do that on systems that have a true vfork() function.
- We now spawn a thread to deliver SIGALRM to threads when setitimer()
is used. This enables the most precise wakeups the OS makes possible.
- The Cosmopolitan runtime now uses less memory. On NetBSD for example,
it turned out the kernel would actually commit the PT_GNU_STACK size
which caused RSS to be 6mb for every process. Now it's down to ~4kb.
On Apple Silicon, we reduce the mandatory upstream thread size to the
smallest possible size to reduce the memory overhead of Cosmo threads.
The examples directory has a program called greenbean which can spawn
a web server on Linux with 10,000 worker threads and have the memory
usage of the process be ~77mb. The 1024 byte overhead of POSIX-style
thread-local storage is now optional; it won't be allocated until the
pthread_setspecific/getspecific functions are called. On Windows, the
threads that get spawned which are internal to the libc implementation
use reserve rather than commit memory, which shaves a few hundred kb.
- sigaltstack() is now supported on Windows, however it's currently not
able to be used to handle stack overflows, since crash signals are
still generated by WIN32. However the crash handler will still switch
to the alt stack, which is helpful in environments with tiny threads.
- Test binaries are now smaller. Many of the mandatory dependencies of
the test runner have been removed. This ensures many programs can do a
better job only linking the the thing they're testing. This caused the
test binaries for LIBC_FMT for example, to decrease from 200kb to 50kb
- long double is no longer used in the implementation details of libc,
except in the APIs that define it. The old code that used long double
for time (instead of struct timespec) has now been thoroughly removed.
- ShowCrashReports() is now much tinier in MODE=tiny. Instead of doing
backtraces itself, it'll just print a command you can run on the shell
using our new `cosmoaddr2line` program to view the backtrace.
- Crash report signal handling now works in a much better way. Instead
of terminating the process, it now relies on SA_RESETHAND so that the
default SIG_IGN behavior can terminate the process if necessary.
- Our pledge() functionality has now been fully ported to AARCH64 Linux.
This change fixes Cosmopolitan so it has fewer opinions about compiler
warnings. The whole repository had to be cleaned up to be buildable in
-Werror -Wall mode. This lets us benefit from things like strict const
checking. Some actual bugs might have been caught too.
This way complex runtime features (e.g. ftrace, symbol tables) can
always yoink zipos support. This is important now that apelink.com
automates embedding symbol tables for multiple cpus.
This change ports APE Loader to Linux AARCH64, so that Raspberry Pi
users can run programs like redbean, without the executable needing
to modify itself. Progress has also slipped into this change on the
issue of making progress better conforming to user expectations and
industry standards regarding which symbols we're allowed to declare
This change takes an entirely new approach to the incremental linking of
pkzip executables. The assets created by zipobj.com are now treated like
debug data. After a .com.dbg is compiled, fixupobj.com should be run, so
it can apply fixups to the offsets and move the zip directory to the end
of the file. Since debug data doesn't get objcopy'd, a new tool has been
introduced called zipcopy.com which should be run after objcopy whenever
a .com file is created. This is all automated by the `cosmocc` toolchain
which is rapidly becoming the new recommended approach.
This change also introduces the new C23 checked arithmetic macros.
- Work towards improving non-optimized build support
- Introduce MODE=zero which is -O0 without ASAN/UBSAN
- Use system GCC when ~/.cosmo.mk has USE_SYSTEM_TOOLCHAIN=1
- Have package.com check .privileged code doesn't call non-privileged
This change implements a new approach to function call logging, that's
based on the GCC flag: -fpatchable-function-entry. Read the commentary
in build/config.mk to learn how it works.
There's a new program named ape/ape-m1.c which will be used to build an
embeddable binary that can load ape and elf executables. The support is
mostly working so far, but still chasing down ABI issues.
This makes breaking changes to add underscores to many non-standard
function names provided by the c library. MODE=tiny is now tinier and
we now use smaller locks that are better for tiny apps in this mode.
Some headers have been renamed to be in the same folder as the build
package, so it'll be easier to know which build dependency is needed.
Certain old misguided interfaces have been removed. Intel intrinsics
headers are now listed in libc/isystem (but not in the amalgamation)
to help further improve open source compatibility. Header complexity
has also been reduced. Lastly, more shell scripts are now available.
This change restores the .symtab symbol table files in our flagship
programs (e.g. redbean.com, python.com) needed to show backtraces. This
also rolls back earlier changes to zip.com w.r.t. temp directories since
the right way to do it turned out to be the -b DIR flag.
This change also improves the performance of zip.com. It turned out
mmap() wasn't being used, because zip.com was assuming a 4096-byte
granularity, but cosmo requires 65536. There was also a chance to speed
up stdio scanning using the unlocked functions.
Landlock Make will no longer sandbox prerequisites that end with a
trailing slash. This means you can use use directory prerequisites
for detecting deleted files when using using globbing, without the
effect of unveiling the entire directory. When you do want make to
unveil directories, you can omit the trailing slash.
We now guarantee TMPDIR will be defined on a per build rule basis. It'll
be an absolute path. It'll be secure and unique. It'll be rm -rf'd after
the last shell script line in your build rule is executed. If $TMPDIR is
already defined, then it'll be created as a subdirectory of your $TMPDIR
and then replace the variable with the new definition. The Landlock Make
repository will be updated with examples shortly after this change which
shall be known as Landlock Make 1.1.1.
See #530
It turned out that specifying all SRCS and INCS as dependencies on the
pattern rules for all headers, caused `make` memory usage to skyrocket
from 40mb ot 160mb. This change also reduces the build graph another 4%.
This change also removes the futimens() call on the Landlock Make output
file workaround, since it caused problems with commands like fixupobj
which modify-in-place. It turns out if a file is opened for writing and
then no writes actually occur, then the modified time doesn't change.
- 10.5% reduction of o//depend dependency graph
- 8.8% reduction in latency of make command
- Fix issue with temporary file cleanup
There's a new -w option in compile.com that turns off the recent
Landlock output path workaround for "good commands" which do not
unlink() the output file like GNU tooling does.
Our new GNU Make unveil sandboxing appears to have zero overhead
in the grand scheme of things. Full builds are pretty fast since
the only thing that's actually slowed us down is probably libcxx
make -j16 MODE=rel
RL: took 85,732,063µs wall time
RL: ballooned to 323,612kb in size
RL: needed 828,560,521µs cpu (11% kernel)
RL: caused 39,080,670 page faults (99% memcpy)
RL: 350,073 context switches (72% consensual)
RL: performed 0 reads and 11,494,960 write i/o operations
pledge() and unveil() no longer consider ENOSYS to be an error.
These functions have also been added to Python's cosmo module.
This change also removes some WIN32 APIs and System Five magnums
which we're not using and it's doubtful anyone else would be too
- Write tests for cthreads
- Fix bugs in pe2.com tool
- Fix ASAN issue with GetDosEnviron()
- Consolidate the cthread header files
- Some code size optimizations for MODE=
- Attempted to squash a tls linker warning
- Attempted to get futexes working on FreeBSD
- Fix some minor issues in ar.com
- Have execve() look for `ape` command
- Rewrite NT paths using /c/ rather /??/c:/
- Replace broken GCC symlinks with .sym files
- Rewrite $PATH environment variables on startup
- Make $(APE_NO_MODIFY_SELF) the default bootloader
- Add all build command dependencies to build/bootstrap
- Get the repository mostly building from source on non-Linux
- Add GetCpuCount() API to redbean
- Add unix.gmtime() API to redbean
- Add unix.readlink() API to redbean
- Add unix.localtime() API to redbean
- Perfect the new redbean UNIX module APIs
- Integrate with Linux clock_gettime() vDSO
- Run Lua garbage collector when malloc() fails
- Fix another regression quirk with linenoise repl
- Fix GetProgramExecutableName() for systemwide installs
- Fix a build flake with test/libc/mem/test.mk SRCS list
Continuous Integration (via runit and runitd) is now re-enabled on win7
and win10. The `make test` command, which runs the tests on all systems
is now the fastest and most stable it's been since the project started.
UBSAN is now enabled in MODE=dbg in addition to ASAN. Many instances of
undefined behavior have been removed. Mostly things like passing a NULL
argument to memcpy(), which works fine with Cosmopolitan Libc, but that
doesn't prevents the compiler from being unhappy. There was an issue w/
GNU make where static analysis claims a sprintf() call can overflow. We
also now have nicer looking crash reports on Windows since uname should
now be supported and msys64 addr2line works reliably.
We defined `noinline` as an abbreviation for the longer version
`__attribute__((__noinline__))` which caused name clashes since
third party codebases often write it as `__attribute__((noinline))`.
This commit makes numerous refinements to cosmopolitan memory handling.
The default stack size has been reduced from 2mb to 128kb. A new macro
is now provided so you can easily reconfigure the stack size to be any
value you want. Work around the breaking change by adding to your main:
STATIC_STACK_SIZE(0x00200000); // 2mb stack
If you're not sure how much stack you need, then you can use:
STATIC_YOINK("stack_usage_logging");
After which you can `sort -nr o/$MODE/stack.log`. Based on the unit test
suite, nothing in the Cosmopolitan repository (except for Python) needs
a stack size greater than 30kb. There are also new macros for detecting
the size and address of the stack at runtime, e.g. GetStackAddr(). We
also now support sigaltstack() so if you want to see nice looking crash
reports whenever a stack overflow happens, you can put this in main():
ShowCrashReports();
Under `make MODE=dbg` and `make MODE=asan` the unit testing framework
will now automatically print backtraces of memory allocations when
things like memory leaks happen. Bugs are now fixed in ASAN global
variable overrun detection. The memtrack and asan runtimes also handle
edge cases now. The new tools helped to identify a few memory leaks,
which are fixed by this change.
This change should fix an issue reported in #288 with ARG_MAX limits.
Fixing this doubled the performance of MKDEPS.COM and AR.COM yet again.
- Python static hello world now 1.8mb
- Python static fully loaded now 10mb
- Python HTTPS client now uses MbedTLS
- Python REPL now completes import stmts
- Increase stack size for Python for now
- Begin synthesizing posixpath and ntpath
- Restore Python \N{UNICODE NAME} support
- Restore Python NFKD symbol normalization
- Add optimized code path for Intel SHA-NI
- Get more Python unit tests passing faster
- Get Python help() pagination working on NT
- Python hashlib now supports MbedTLS PBKDF2
- Make memcpy/memmove/memcmp/bcmp/etc. faster
- Add Mersenne Twister and Vigna to LIBC_RAND
- Provide privileged __printf() for error code
- Fix zipos opendir() so that it reports ENOTDIR
- Add basic chmod() implementation for Windows NT
- Add Cosmo's best functions to Python cosmo module
- Pin function trace indent depth to that of caller
- Show memory diagram on invalid access in MODE=dbg
- Differentiate stack overflow on crash in MODE=dbg
- Add stb_truetype and tools for analyzing font files
- Upgrade to UNICODE 13 and reduce its binary footprint
- COMPILE.COM now logs resource usage of build commands
- Start implementing basic poll() support on bare metal
- Set getauxval(AT_EXECFN) to GetModuleFileName() on NT
- Add descriptions to strerror() in non-TINY build modes
- Add COUNTBRANCH() macro to help with micro-optimizations
- Make error / backtrace / asan / memory code more unbreakable
- Add fast perfect C implementation of μ-Law and a-Law audio codecs
- Make strtol() functions consistent with other libc implementations
- Improve Linenoise implementation (see also github.com/jart/bestline)
- COMPILE.COM now suppresses stdout/stderr of successful build commands
The ZIP filesystem has a breaking change. You now need to use /zip/ to
open() / opendir() / etc. assets within the ZIP structure of your APE
binary, instead of the previous convention of using zip: or zip! URIs.
This is needed because Python likes to use absolute paths, and having
ZIP paths encoded like URIs simply broke too many things.
Many more system calls have been updated to be able to operate on ZIP
files and file descriptors. In particular fcntl() and ioctl() since
Python would do things like ask if a ZIP file is a terminal and get
confused when the old implementation mistakenly said yes, because the
fastest way to guarantee native file descriptors is to dup(2). This
change also improves the async signal safety of zipos and ensures it
doesn't maintain any open file descriptors beyond that which the user
has opened.
This change makes a lot of progress towards adding magic numbers that
are specific to platforms other than Linux. The philosophy here is that,
if you use an operating system like FreeBSD, then you should be able to
take advantage of FreeBSD exclusive features, even if we don't polyfill
them on other platforms. For example, you can now open() a file with the
O_VERIFY flag. If your program runs on other platforms, then Cosmo will
automatically set O_VERIFY to zero. This lets you safely use it without
the need for #ifdef or ifstatements which detract from readability.
One of the blindspots of the ASAN memory hardening we use to offer Rust
like assurances has always been that memory passed to the kernel via
system calls (e.g. writev) can't be checked automatically since the
kernel wasn't built with MODE=asan. This change makes more progress
ensuring that each system call will verify the soundness of memory
before it's passed to the kernel. The code for doing these checks is
fast, particularly for buffers, where it can verify 64 bytes a cycle.
- Correct O_LOOP definition on NT
- Introduce program_executable_name
- Add ASAN guards to more system calls
- Improve termios compatibility with BSDs
- Fix bug in Windows auxiliary value encoding
- Add BSD and XNU specific errnos and open flags
- Add check to ensure build doesn't talk to internet