/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2014 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/math.h" #include "libc/tinymath/feval.internal.h" asm(".ident\t\"\\n\\n\ Musl libc (MIT License)\\n\ Copyright 2005-2014 Rich Felker, et. al.\""); asm(".include \"libc/disclaimer.inc\""); /* clang-format off */ /** * Returns inverse hyperbolic tangent of 𝑥. * @define x ? log1p(2 * x / (1 - x)) / 2 : x */ float atanhf(float x) { union {float f; uint32_t i;} u = {.f = x}; unsigned s = u.i >> 31; float_t y; /* |x| */ u.i &= 0x7fffffff; y = u.f; if (u.i < 0x3f800000 - (1<<23)) { if (u.i < 0x3f800000 - (32<<23)) { /* handle underflow */ if (u.i < (1<<23)) fevalf(y*y); } else { /* |x| < 0.5, up to 1.7ulp error */ y = 0.5f*log1pf(2*y + 2*y*y/(1-y)); } } else { /* avoid overflow */ y = 0.5f*log1pf(2*(y/(1-y))); } return s ? -y : y; }