/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2014 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/intrin/likely.h" #include "libc/math.h" #include "libc/tinymath/complex.internal.h" #include "libc/tinymath/internal.h" #include "libc/tinymath/log2f_data.internal.h" #ifndef TINY asm(".ident\t\"\\n\\n\ Double-precision math functions (MIT License)\\n\ Copyright 2018 ARM Limited\""); asm(".include \"libc/disclaimer.inc\""); /* clang-format off */ /* * Single-precision log2 function. * * Copyright (c) 2017-2018, Arm Limited. * SPDX-License-Identifier: MIT */ /* LOG2F_TABLE_BITS = 4 LOG2F_POLY_ORDER = 4 ULP error: 0.752 (nearest rounding.) Relative error: 1.9 * 2^-26 (before rounding.) */ #define N (1 << LOG2F_TABLE_BITS) #define T __log2f_data.tab #define A __log2f_data.poly #define OFF 0x3f330000 /** * Calculates log₂𝑥. */ float log2f(float x) { double_t z, r, r2, p, y, y0, invc, logc; uint32_t ix, iz, top, tmp; int k, i; ix = asuint(x); /* Fix sign of zero with downward rounding when x==1. */ if (WANT_ROUNDING && UNLIKELY(ix == 0x3f800000)) return 0; if (UNLIKELY(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { /* x < 0x1p-126 or inf or nan. */ if (ix * 2 == 0) return __math_divzerof(1); if (ix == 0x7f800000) /* log2(inf) == inf. */ return x; if ((ix & 0x80000000) || ix * 2 >= 0xff000000) return __math_invalidf(x); /* x is subnormal, normalize it. */ ix = asuint(x * 0x1p23f); ix -= 23 << 23; } /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. The range is split into N subintervals. The ith subinterval contains z and c is near its center. */ tmp = ix - OFF; i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N; top = tmp & 0xff800000; iz = ix - top; k = (int32_t)tmp >> 23; /* arithmetic shift */ invc = T[i].invc; logc = T[i].logc; z = (double_t)asfloat(iz); /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */ r = z * invc - 1; y0 = logc + (double_t)k; /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */ r2 = r * r; y = A[1] * r + A[2]; y = A[0] * r2 + y; p = A[3] * r + y0; y = y * r2 + p; return eval_as_float(y); } #endif /* !TINY */