/*-*- mode:c;indent-tabs-mode:t;c-basic-offset:8;tab-width:8;coding:utf-8 -*-│ │vi: set et ft=c ts=8 tw=8 fenc=utf-8 :vi│ ╚──────────────────────────────────────────────────────────────────────────────╝ │ │ │ Musl Libc │ │ Copyright © 2005-2014 Rich Felker, et al. │ │ │ │ Permission is hereby granted, free of charge, to any person obtaining │ │ a copy of this software and associated documentation files (the │ │ "Software"), to deal in the Software without restriction, including │ │ without limitation the rights to use, copy, modify, merge, publish, │ │ distribute, sublicense, and/or sell copies of the Software, and to │ │ permit persons to whom the Software is furnished to do so, subject to │ │ the following conditions: │ │ │ │ The above copyright notice and this permission notice shall be │ │ included in all copies or substantial portions of the Software. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, │ │ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF │ │ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. │ │ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY │ │ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, │ │ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │ │ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │ │ │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "libc/complex.h" #include "libc/math.h" #include "libc/tinymath/complex.internal.h" asm(".ident\t\"\\n\\n\ Musl libc (MIT License)\\n\ Copyright 2005-2014 Rich Felker, et. al.\""); asm(".include \"libc/disclaimer.inc\""); /* clang-format off */ /* origin: FreeBSD /usr/src/lib/msun/src/s_csqrtf.c */ /*- * Copyright (c) 2007 David Schultz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * gcc doesn't implement complex multiplication or division correctly, * so we need to handle infinities specially. We turn on this pragma to * notify conforming c99 compilers that the fast-but-incorrect code that * gcc generates is acceptable, since the special cases have already been * handled. */ // #pragma STDC CX_LIMITED_RANGE ON float complex csqrtf(float complex z) { float a = crealf(z), b = cimagf(z); double t; /* Handle special cases. */ if (z == 0) return CMPLXF(0, b); if (isinf(b)) return CMPLXF(INFINITY, b); if (isnan(a)) { t = (b - b) / (b - b); /* raise invalid if b is not a NaN */ return CMPLXF(a, t); /* return NaN + NaN i */ } if (isinf(a)) { /* * csqrtf(inf + NaN i) = inf + NaN i * csqrtf(inf + y i) = inf + 0 i * csqrtf(-inf + NaN i) = NaN +- inf i * csqrtf(-inf + y i) = 0 + inf i */ if (signbit(a)) return CMPLXF(fabsf(b - b), copysignf(a, b)); else return CMPLXF(a, copysignf(b - b, b)); } /* * The remaining special case (b is NaN) is handled just fine by * the normal code path below. */ /* * We compute t in double precision to avoid overflow and to * provide correct rounding in nearly all cases. * This is Algorithm 312, CACM vol 10, Oct 1967. */ if (a >= 0) { t = sqrt((a + hypot(a, b)) * 0.5); return CMPLXF(t, b / (2.0 * t)); } else { t = sqrt((-a + hypot(a, b)) * 0.5); return CMPLXF(fabsf(b) / (2.0 * t), copysignf(t, b)); } }