/*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:2;tab-width:8;coding:utf-8 -*-│ │vi: set net ft=c ts=2 sts=2 sw=2 fenc=utf-8 :vi│ ╞══════════════════════════════════════════════════════════════════════════════╡ │ Copyright 2023 Justine Alexandra Roberts Tunney │ │ │ │ Permission to use, copy, modify, and/or distribute this software for │ │ any purpose with or without fee is hereby granted, provided that the │ │ above copyright notice and this permission notice appear in all copies. │ │ │ │ THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL │ │ WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED │ │ WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE │ │ AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL │ │ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR │ │ PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER │ │ TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR │ │ PERFORMANCE OF THIS SOFTWARE. │ ╚─────────────────────────────────────────────────────────────────────────────*/ #include "third_party/ggml/ggjt.v1.q5_1.h" #include "libc/assert.h" #include "libc/math.h" #include "libc/str/str.h" #include "third_party/aarch64/arm_neon.internal.h" #include "third_party/ggml/fp16.internal.h" #include "third_party/ggml/ggjt.v1.internal.h" #include "third_party/ggml/ggjt.v1.q8_1.h" // clang-format off static_assert(sizeof(block_v1_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + V1_QK5_1 / 2, "wrong q5_1 block size/padding"); void quantize_row_v1_q5_1_reference(const float * restrict x, block_v1_q5_1 * restrict y, int k) { assert(k % V1_QK5_1 == 0); const int nb = k / V1_QK5_1; for (int i = 0; i < nb; i++) { float min = FLT_MAX; float max = -FLT_MAX; for (int l = 0; l < V1_QK5_1; l++) { const float v = x[i*V1_QK5_1 + l]; if (v < min) min = v; if (v > max) max = v; } const float d = (max - min) / ((1 << 5) - 1); const float id = d ? 1.0f/d : 0.0f; y[i].d = GGML_FP32_TO_FP16(d); y[i].m = GGML_FP32_TO_FP16(min); uint32_t qh = 0; for (int l = 0; l < V1_QK5_1; l += 2) { const float v0 = (x[i*V1_QK5_1 + l + 0] - min)*id; const float v1 = (x[i*V1_QK5_1 + l + 1] - min)*id; const uint32_t vi0 = (int) (v0 + 0.5f); const uint32_t vi1 = (int) (v1 + 0.5f); y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position qh |= ((vi0 & 0x10) >> 4) << (l + 0); qh |= ((vi1 & 0x10) >> 4) << (l + 1); } memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); } } void quantize_row_v1_q5_1(const float * restrict x, void * restrict vy, int k) { assert(k % V1_QK5_1 == 0); block_v1_q5_1 * restrict y = vy; quantize_row_v1_q5_1_reference(x, y, k); } size_t ggml_quantize_v1_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) { assert(k % V1_QK5_1 == 0); const int nb = k / V1_QK5_1; for (int j = 0; j < n; j += k) { block_v1_q5_1 * restrict y = (block_v1_q5_1 *)dst + j/V1_QK5_1; quantize_row_v1_q5_1_reference(src + j, y, k); for (int i = 0; i < nb; i++) { uint32_t qh; memcpy(&qh, &y[i].qh, sizeof(qh)); for (int l = 0; l < V1_QK5_1; l += 2) { const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; // cast to 16 bins const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2; const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2; hist[vi0]++; hist[vi1]++; } } } return (n/V1_QK5_1*sizeof(block_v1_q5_1)); } void dequantize_row_v1_q5_1(const void * restrict vx, float * restrict y, int k) { assert(k % V1_QK5_1 == 0); const int nb = k / V1_QK5_1; const block_v1_q5_1 * restrict x = vx; for (int i = 0; i < nb; i++) { const float d = GGML_FP16_TO_FP32(x[i].d); const float m = GGML_FP16_TO_FP32(x[i].m); const uint8_t * restrict pp = x[i].qs; uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); for (int l = 0; l < V1_QK5_1; l += 2) { const uint8_t vi = pp[l/2]; // extract the 5-th bit from qh const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4; const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4; const uint8_t vi0 = (vi & 0x0F) | vh0; const uint8_t vi1 = (vi >> 4) | vh1; const float v0 = vi0*d + m; const float v1 = vi1*d + m; y[i*V1_QK5_1 + l + 0] = v0; y[i*V1_QK5_1 + l + 1] = v1; assert(!isnan(y[i*V1_QK5_1 + l + 0])); assert(!isnan(y[i*V1_QK5_1 + l + 1])); } } } void ggml_vec_dot_v1_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { const int nb = n / V1_QK8_1; assert(n % V1_QK8_1 == 0); assert(nb % 2 == 0); assert(V1_QK8_1 == V1_QK5_1); const block_v1_q5_1 * restrict x = vx; const block_v1_q8_1 * restrict y = vy; #if defined(__ARM_NEON) float32x4_t sumv = vdupq_n_f32(0.0f); float summs = 0.0f; uint64_t tmp[4]; for (int i = 0; i < nb; ++i) { const block_v1_q5_1 * restrict x0 = &x[i]; const block_v1_q8_1 * restrict y0 = &y[i]; summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); // extract the 5th bit uint32_t qh; memcpy(&qh, x0->qh, sizeof(qh)); tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; tmp[3] = table_b2b_0[(qh >> 24) ]; const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0)); const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2)); const uint8x16_t v0 = vld1q_u8(x0->qs); // 4-bit -> 8-bit const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F))); const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4)); // interleave const int8x16_t v0lz = vzip1q_s8(v0l, v0h); const int8x16_t v0hz = vzip2q_s8(v0l, v0h); // add const int8x16_t v0lf = vorrq_s8(v0lz, qhl); const int8x16_t v0hf = vorrq_s8(v0hz, qhh); // load y const int8x16_t v1l = vld1q_s8(y0->qs); const int8x16_t v1h = vld1q_s8(y0->qs + 16); const float x0d = GGML_FP16_TO_FP32(x0->d); #if defined(__ARM_FEATURE_DOTPROD) sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32( vdotq_s32(vdupq_n_s32(0), v0lf, v1l), vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d); #else const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l)); const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l)); const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h)); const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h)); const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h)); const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h)); sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d); #endif } *s = vaddvq_f32(sumv) + summs; #elif defined(__wasm_simd128__) v128_t sumv = wasm_f32x4_splat(0.0f); float summs = 0.0f; uint64_t tmp[4]; for (int i = 0; i < nb; ++i) { const block_v1_q5_1 * restrict x0 = &x[i]; const block_v1_q8_1 * restrict y0 = &y[i]; summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1); const v128_t m4b = wasm_i8x16_splat(0x0F); // extract the 5th bit uint32_t qh; memcpy(&qh, x0->qh, sizeof(qh)); tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; tmp[3] = table_b2b_0[(qh >> 24) ]; const v128_t qhl = wasm_v128_load(tmp + 0); const v128_t qhh = wasm_v128_load(tmp + 2); const v128_t v0 = wasm_v128_load(x0->qs); // 4-bit -> 8-bit const v128_t v0l = wasm_v128_and (v0, m4b); const v128_t v0h = wasm_u8x16_shr(v0, 4); static bool x = true; // interleave const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23); const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31); // add high bit const v128_t v0lf = wasm_v128_or(v0lz, qhl); const v128_t v0hf = wasm_v128_or(v0hz, qhh); // load y const v128_t v1l = wasm_v128_load(y0->qs); const v128_t v1h = wasm_v128_load(y0->qs + 16); // int8x16 -> int16x8 const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); const float x0d = GGML_FP16_TO_FP32(x0->d); // dot product sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( wasm_i32x4_add( wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), wasm_i32x4_dot_i16x8(v0lfh, v1lh)), wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d))); } *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; #elif defined(__AVX2__) // Initialize accumulator with zeros __m256 acc = _mm256_setzero_ps(); float summs = 0.0f; // Main loop for (int i = 0; i < nb; i++) { const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1); __m256i bx = bytes_from_nibbles_32(x[i].qs); __m256i bxhi = bytes_from_bits_32(x[i].qh); bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); bx = _mm256_or_si256(bx, bxhi); const __m256 dy = _mm256_broadcast_ss(&y[i].d); const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs); const __m256 q = mul_sum_i8_pairs_float(bx, by); acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); } *s = hsum_float_8(acc) + summs; #else float sumf = 0.0; for (int i = 0; i < nb; i++) { const uint8_t * restrict x0 = x[i].qs; const int8_t * restrict y0 = y[i].qs; uint32_t qh; memcpy(&qh, x[i].qh, sizeof(qh)); const float d = GGML_FP16_TO_FP32(x[i].d); const float m = GGML_FP16_TO_FP32(x[i].m); int sxy = 0; for (int j = 0; j < V1_QK8_1/2; j++) { const uint8_t v0 = x0[j]; const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4; const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4; const int x0_0 = (v0 & 0x0F) | x0_0h; const int x1_0 = (v0 >> 4) | x1_0h; const int y0_0 = y0[2*j + 0]; const int y1_0 = y0[2*j + 1]; sxy += x0_0*y0_0 + x1_0*y1_0; } sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1); } *s = sumf; #endif }